**Latent Profile Analysis (LPA)**

The main aim of LCA is to split seemingly heterogeneous data into subclasses of two or more homogeneous groups or classes. In contrast, LPA is a method that is conducted with continuously scaled data, the focus being on generating profiles of participants instead of testing a theoretical model in terms of a measurement model, path analytic model, or full structural model, as is the case, for example, with structural equation modeling. An example of LCA and LPA,is sustainable and active travel behaviors among commuters, separating the respondents into classes based on the facilitators of, and hindrances to, certain modes of travel.

Quick Example of Latent Profile Analysis in R … **nn-dependability-kit**

nn-dependability-kit is an open-source toolbox to support safety engineering of neural networks. The key functionality of nn-dependability-kit includes (a) novel dependability metrics for indicating sufficient elimination of uncertainties in the product life cycle, (b) formal reasoning engine for ensuring that the generalization does not lead to undesired behaviors, and (c) runtime monitoring for reasoning whether a decision of a neural network in operation time is supported by prior similarities in the training data. … **Information Based Control (IBC)**

An information based method for solving stochastic control problems with partial observation has been proposed. First, the information-theoretic lower bounds of the cost function has been analysed. It has been shown, under rather weak assumptions, that reduction of the expected cost with closed-loop control compared to the best open-loop strategy is upper bounded by non-decreasing function of mutual information between control variables and the state trajectory. On the basis of this result, an \textit{Information Based Control} method has been developed. The main idea of the IBC consists in replacing the original control task by a sequence of control problems that are relatively easy to solve and such that information about the state of the system is actively generated. Two examples of the operation of the IBC are given. It has been shown that the IBC is able to find the optimal solution without using dynamic programming at least in these examples. Hence the computational complexity of the IBC is substantially smaller than complexity of dynamic programming, which is the main advantage of the proposed method. … **Skipping Sampler**

We introduce the Skipping Sampler, a novel algorithm to efficiently sample from the restriction of an arbitrary probability density to an arbitrary measurable set. Such conditional densities can arise in the study of risk and reliability and are often of complex nature, for example having multiple isolated modes and non-convex or disconnected support. The sampler can be seen as an instance of the Metropolis-Hastings algorithm with a particular proposal structure, and we establish sufficient conditions under which the Strong Law of Large Numbers and the Central Limit Theorem hold. We give theoretical and numerical evidence of improved performance relative to the Random Walk Metropolis algorithm. …

# If you did not already know

**21**
*Tuesday*
Feb 2023

Posted What is ...

in