Fully-Trained Generative Adversarial Network (FTGAN)
As a sub-domain of text-to-image synthesis, text-to-face generation has huge potentials in public safety domain. With lack of dataset, there are almost no related research focusing on text-to-face synthesis. In this paper, we propose a fully-trained Generative Adversarial Network (FTGAN) that trains the text encoder and image decoder at the same time for fine-grained text-to-face generation. With a novel fully-trained generative network, FTGAN can synthesize higher-quality images and urge the outputs of the FTGAN are more relevant to the input sentences. In addition, we build a dataset called SCU-Text2face for text-to-face synthesis. Through extensive experiments, the FTGAN shows its superiority in boosting both generated images’ quality and similarity to the input descriptions. The proposed FTGAN outperforms the previous state of the art, boosting the best reported Inception Score to 4.63 on the CUB dataset. On SCU-text2face, the face images generated by our proposed FTGAN just based on the input descriptions is of average 59% similarity to the ground-truth, which set a baseline for text-to-face synthesis. …
Differentiable Programming
Differentiable programming is a programming paradigm in which the programs can be differentiated throughout, usually via automatic differentiation. This allows for gradient based optimization of parameters in the program, often via gradient descent. Differentiable programming has found use in areas such as combining deep learning with physics engines in robotics, differentiable ray tracing, and image processing. …
Apache Atlas
Atlas is a scalable and extensible set of core foundational governance services – enabling enterprises to effectively and efficiently meet their compliance requirements within Hadoop and allows integration with the whole enterprise data ecosystem. Apache Atlas provides open metadata management and governance capabilities for organizations to build a catalog of their data assets, classify and govern these assets and provide collaboration capabilities around these data assets for data scientists, analysts and the data governance team. …
Reinforced Neural Extractive Summarization (RNES)
Coherence plays a critical role in producing a high-quality summary from a document. In recent years, neural extractive summarization is becoming increasingly attractive. However, most of them ignore the coherence of summaries when extracting sentences. As an effort towards extracting coherent summaries, we propose a neural coherence model to capture the cross-sentence semantic and syntactic coherence patterns. The proposed neural coherence model obviates the need for feature engineering and can be trained in an end-to-end fashion using unlabeled data. Empirical results show that the proposed neural coherence model can efficiently capture the cross-sentence coherence patterns. Using the combined output of the neural coherence model and ROUGE package as the reward, we design a reinforcement learning method to train a proposed neural extractive summarizer which is named Reinforced Neural Extractive Summarization (RNES) model. The RNES model learns to optimize coherence and informative importance of the summary simultaneously. Experimental results show that the proposed RNES outperforms existing baselines and achieves state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The qualitative evaluation indicates that summaries produced by RNES are more coherent and readable. …
If you did not already know
20 Monday Feb 2023
Posted What is ...
in