If you did not already know

Leader Gradient Descent (LGD) google
We consider distributed optimization under communication constraints for training deep learning models. We propose a new algorithm, whose parameter updates rely on two forces: a regular gradient step, and a corrective direction dictated by the currently best-performing worker (leader). Our method differs from the parameter-averaging scheme EASGD in a number of ways: (i) our objective formulation does not change the location of stationary points compared to the original optimization problem; (ii) we avoid convergence decelerations caused by pulling local workers descending to different local minima to each other (i.e. to the average of their parameters); (iii) our update by design breaks the curse of symmetry (the phenomenon of being trapped in poorly generalizing sub-optimal solutions in symmetric non-convex landscapes); and (iv) our approach is more communication efficient since it broadcasts only parameters of the leader rather than all workers. We provide theoretical analysis of the batch version of the proposed algorithm, which we call Leader Gradient Descent (LGD), and its stochastic variant (LSGD). Finally, we implement an asynchronous version of our algorithm and extend it to the multi-leader setting, where we form groups of workers, each represented by its own local leader (the best performer in a group), and update each worker with a corrective direction comprised of two attractive forces: one to the local, and one to the global leader (the best performer among all workers). The multi-leader setting is well-aligned with current hardware architecture, where local workers forming a group lie within a single computational node and different groups correspond to different nodes. For training convolutional neural networks, we empirically demonstrate that our approach compares favorably to state-of-the-art baselines. …

Deep Multimodal Subspace Clustering Network google
We present convolutional neural network (CNN) based approaches for unsupervised multimodal subspace clustering. The proposed framework consists of three main stages – multimodal encoder, self-expressive layer, and multimodal decoder. The encoder takes multimodal data as input and fuses them to a latent space representation. We investigate early, late and intermediate fusion techniques and propose three different encoders corresponding to them for spatial fusion. The self-expressive layers and multimodal decoders are essentially the same for different spatial fusion-based approaches. In addition to various spatial fusion-based methods, an affinity fusion-based network is also proposed in which the self-expressiveness layer corresponding to different modalities is enforced to be the same. Extensive experiments on three datasets show that the proposed methods significantly outperform the state-of-the-art multimodal subspace clustering methods. …

GITNet google
In several natural language tasks, labeled sequences are available in separate domains (say, languages), but the goal is to label sequences with mixed domain (such as code-switched text). Or, we may have available models for labeling whole passages (say, with sentiments), which we would like to exploit toward better position-specific label inference (say, target-dependent sentiment annotation). A key characteristic shared across such tasks is that different positions in a primary instance can benefit from different `experts’ trained from auxiliary data, but labeled primary instances are scarce, and labeling the best expert for each position entails unacceptable cognitive burden. We propose GITNet, a unified position-sensitive multi-task recurrent neural network (RNN) architecture for such applications. Auxiliary and primary tasks need not share training instances. Auxiliary RNNs are trained over auxiliary instances. A primary instance is also submitted to each auxiliary RNN, but their state sequences are gated and merged into a novel composite state sequence tailored to the primary inference task. Our approach is in sharp contrast to recent multi-task networks like the cross-stitch and sluice network, which do not control state transfer at such fine granularity. We demonstrate the superiority of GIRNet using three applications: sentiment classification of code-switched passages, part-of-speech tagging of code-switched text, and target position-sensitive annotation of sentiment in monolingual passages. In all cases, we establish new state-of-the-art performance beyond recent competitive baselines. …

s-bAbI google
In this study, we investigate the limits of the current state of the art AI system for detecting buffer overflows and compare it with current static analysis tools. To do so, we developed a code generator, s-bAbI, capable of producing an arbitrarily large number of code samples of controlled complexity. We found that the static analysis engines we examined have good precision, but poor recall on this dataset, except for a sound static analyzer that has good precision and recall. We found that the state of the art AI system, a memory network modeled after Choi et al. [1], can achieve similar performance to the static analysis engines, but requires an exhaustive amount of training data in order to do so. Our work points towards future approaches that may solve these problems; namely, using representations of code that can capture appropriate scope information and using deep learning methods that are able to perform arithmetic operations. …

If you did not already know

Concurrent Meta-Reinforcement Learning (CMRL) google
State-of-the-art meta reinforcement learning algorithms typically assume the setting of a single agent interacting with its environment in a sequential manner. A negative side-effect of this sequential execution paradigm is that, as the environment becomes more and more challenging, and thus requiring more interaction episodes for the meta-learner, it needs the agent to reason over longer and longer time-scales. To combat the difficulty of long time-scale credit assignment, we propose an alternative parallel framework, which we name ‘Concurrent Meta-Reinforcement Learning’ (CMRL), that transforms the temporal credit assignment problem into a multi-agent reinforcement learning one. In this multi-agent setting, a set of parallel agents are executed in the same environment and each of these ‘rollout’ agents are given the means to communicate with each other. The goal of the communication is to coordinate, in a collaborative manner, the most efficient exploration of the shared task the agents are currently assigned. This coordination therefore represents the meta-learning aspect of the framework, as each agent can be assigned or assign itself a particular section of the current task’s state space. This framework is in contrast to standard RL methods that assume that each parallel rollout occurs independently, which can potentially waste computation if many of the rollouts end up sampling the same part of the state space. Furthermore, the parallel setting enables us to define several reward sharing functions and auxiliary losses that are non-trivial to apply in the sequential setting. We demonstrate the effectiveness of our proposed CMRL at improving over sequential methods in a variety of challenging tasks. …

Trellis Network google
We present trellis networks, a new architecture for sequence modeling. On the one hand, a trellis network is a temporal convolutional network with special structure, characterized by weight tying across depth and direct injection of the input into deep layers. On the other hand, we show that truncated recurrent networks are equivalent to trellis networks with special sparsity structure in their weight matrices. Thus trellis networks with general weight matrices generalize truncated recurrent networks. We leverage these connections to design high-performing trellis networks that absorb structural and algorithmic elements from both recurrent and convolutional models. Experiments demonstrate that trellis networks outperform the current state of the art on a variety of challenging benchmarks, including word-level language modeling on Penn Treebank and WikiText-103, character-level language modeling on Penn Treebank, and stress tests designed to evaluate long-term memory retention. The code is available at https://…/trellisnet . …

DirNet google
Recurrent neural networks (RNNs) achieve cutting-edge performance on a variety of problems. However, due to their high computational and memory demands, deploying RNNs on resource constrained mobile devices is a challenging task. To guarantee minimum accuracy loss with higher compression rate and driven by the mobile resource requirement, we introduce a novel model compression approach DirNet based on an optimized fast dictionary learning algorithm, which 1) dynamically mines the dictionary atoms of the projection dictionary matrix within layer to adjust the compression rate 2) adaptively changes the sparsity of sparse codes cross the hierarchical layers. Experimental results on language model and an ASR model trained with a 1000h speech dataset demonstrate that our method significantly outperforms prior approaches. Evaluated on off-the-shelf mobile devices, we are able to reduce the size of original model by eight times with real-time model inference and negligible accuracy loss. …

Image Enhancement Generative Adversarial Network (IEGAN) google
Despite the breakthroughs in quality of image enhancement, an end-to-end solution for simultaneous recovery of the finer texture details and sharpness for degraded images with low resolution is still unsolved. Some existing approaches focus on minimizing the pixel-wise reconstruction error which results in a high peak signal-to-noise ratio. The enhanced images fail to provide high-frequency details and are perceptually unsatisfying, i.e., they fail to match the quality expected in a photo-realistic image. In this paper, we present Image Enhancement Generative Adversarial Network (IEGAN), a versatile framework capable of inferring photo-realistic natural images for both artifact removal and super-resolution simultaneously. Moreover, we propose a new loss function consisting of a combination of reconstruction loss, feature loss and an edge loss counterpart. The feature loss helps to push the output image to the natural image manifold and the edge loss preserves the sharpness of the output image. The reconstruction loss provides low-level semantic information to the generator regarding the quality of the generated images compared to the original. Our approach has been experimentally proven to recover photo-realistic textures from heavily compressed low-resolution images on public benchmarks and our proposed high-resolution World100 dataset. …

If you did not already know

Multi-Node2vec google
Learning interpretable features from complex multilayer networks is a challenging and important problem. The need for such representations is particularly evident in multilayer networks of the brain, where nodal characteristics may help model and differentiate regions of the brain according to individual, cognitive task, or disease. Motivated by this problem, we introduce the multi-node2vec algorithm, an efficient and scalable feature engineering method that automatically learns continuous node feature representations from multilayer networks. Multi-node2vec relies upon a second-order random walk sampling procedure that efficiently explores the inner- and intra-layer ties of the observed multilayer network is utilized to identify multilayer neighborhoods. Maximum likelihood estimators of the nodal features are identified through the use of the Skip-gram neural network model on the collection of sampled neighborhoods. We investigate the conditions under which multi-node2vec is an approximation of a closed-form matrix factorization problem. We demonstrate the efficacy of multi-node2vec on a multilayer functional brain network from resting state fMRI scans over a group of 74 healthy individuals. We find that multi-node2vec outperforms contemporary methods on complex networks, and that multi-node2vec identifies nodal characteristics that closely associate with the functional organization of the brain. …

FoveaBox google
We present FoveaBox, an accurate, flexible and completely anchor-free framework for object detection. While almost all state-of-the-art object detectors utilize the predefined anchors to enumerate possible locations, scales and aspect ratios for the search of the objects, their performance and generalization ability are also limited to the design of anchors. Instead, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. The scales of target boxes are naturally associated with feature pyramid representations for each input image. Without bells and whistles, FoveaBox achieves state-of-the-art single model performance of 42.1 AP on the standard COCO detection benchmark. Specially for the objects with arbitrary aspect ratios, FoveaBox brings in significant improvement compared to the anchor-based detectors. More surprisingly, when it is challenged by the stretched testing images, FoveaBox shows great robustness and generalization ability to the changed distribution of bounding box shapes. The code will be made publicly available. …

Orthogonal Floating Search Framework google
The present study proposes a new Orthogonal Floating Search framework for structure selection of nonlinear systems by adapting the existing floating search algorithms for feature selection. The proposed framework integrates the concept of orthogonal space and consequent Error-Reduction-Ratio (ERR) metric with the existing floating search algorithms. On the basis of this framework, three well-known feature selection algorithms have been adapted which include the classical Sequential Forward Floating Search (SFFS), Improved sequential Forward Floating Search (IFFS) and Oscillating Search (OS). This framework retains the simplicity of classical Orthogonal Forward Regression with ERR (OFR-ERR) and eliminates the nesting effect associated with OFR-ERR. The performance of the proposed framework has been demonstrated considering several benchmark non-linear systems. The results show that most of the existing feature selection methods can easily be tailored to identify the correct system structure of nonlinear systems. …

Distributional Variant of Gradient Temporal-Difference (Distributional GTD2) google
We devise a distributional variant of gradient temporal-difference (TD) learning. Distributional reinforcement learning has been demonstrated to outperform the regular one in the recent study \citep{bellemare2017distributional}. In our paper, we design two new algorithms called distributional GTD2 and distributional TDC using the Cram{\’e}r distance on the distributional version of the Bellman error objective function, which inherits advantages of both the nonlinear gradient TD algorithms and the distributional RL approach. We prove the asymptotic almost-sure convergence to a local optimal solution for general smooth function approximators, which includes neural networks that have been widely used in recent study to solve the real-life RL problems. In each step, the computational complexity is linear w.r.t.\ the number of the parameters of the function approximator, thus can be implemented efficiently for neural networks. …

If you did not already know

Learning to Teach google
Teaching plays a very important role in our society, by spreading human knowledge and educating our next generations. A good teacher will select appropriate teaching materials, impact suitable methodologies, and set up targeted examinations, according to the learning behaviors of the students. In the field of artificial intelligence, however, one has not fully explored the role of teaching, and pays most attention to machine \emph{learning}. In this paper, we argue that equal attention, if not more, should be paid to teaching, and furthermore, an optimization framework (instead of heuristics) should be used to obtain good teaching strategies. We call this approach `learning to teach’. In the approach, two intelligent agents interact with each other: a student model (which corresponds to the learner in traditional machine learning algorithms), and a teacher model (which determines the appropriate data, loss function, and hypothesis space to facilitate the training of the student model). The teacher model leverages the feedback from the student model to optimize its own teaching strategies by means of reinforcement learning, so as to achieve teacher-student co-evolution. To demonstrate the practical value of our proposed approach, we take the training of deep neural networks (DNN) as an example, and show that by using the learning to teach techniques, we are able to use much less training data and fewer iterations to achieve almost the same accuracy for different kinds of DNN models (e.g., multi-layer perceptron, convolutional neural networks and recurrent neural networks) under various machine learning tasks (e.g., image classification and text understanding). …

VCExplorer google
Graphs have been widely used to model different information networks, such as the Web, biological networks and social networks (e.g. Twitter). Due to the size and complexity of these graphs, how to explore and utilize these graphs has become a very challenging problem. In this paper, we propose, VCExplorer, a new interactive graph exploration framework that integrates the strengths of graph visualization and graph summarization. Unlike existing graph visualization tools where vertices of a graph may be clustered into a smaller collection of super/virtual vertices, VCExplorer displays a small number of actual source graph vertices (called hubs) and summaries of the information between these vertices. We refer to such a graph as a HA-graph (Hub-based Aggregation Graph). This allows users to appreciate the relationship between the hubs, rather than super/virtual vertices. Users can navigate through the HA- graph by ‘drilling down’ into the summaries between hubs to display more hubs. We illustrate how the graph aggregation techniques can be integrated into the exploring framework as the consolidated information to users. In addition, we propose efficient graph aggregation algorithms over multiple subgraphs via computation sharing. Extensive experimental evaluations have been conducted using both real and synthetic datasets and the results indicate the effectiveness and efficiency of VCExplorer for exploration. …

Dirichlet Process Forest google
Methods based on Bayesian decision tree ensembles have proven valuable in constructing high-quality predictions, and are particularly attractive in certain settings because they encourage low-order interaction effects. Despite adapting to the presence of low-order interactions for prediction purpose, we show that Bayesian decision tree ensembles are generally anti-conservative for the purpose of conducting interaction detection. We address this problem by introducing Dirichlet process forests (DP-Forests), which leverage the presence of low-order interactions by clustering the trees so that trees within the same cluster focus on detecting a specific interaction. We show on both simulated and benchmark data that DP-Forests perform well relative to existing interaction detection techniques for detecting low-order interactions, attaining very low false-positive and false-negative rates while maintaining the same performance for prediction using a comparable computational budget. …

Network Science google
Network science is an interdisciplinary academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks. The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as ‘the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena.’ …

If you did not already know

Pangea google
Storage and memory systems for modern data analytics are heavily layered, managing shared persistent data, cached data, and non- shared execution data in separate systems such as distributed file system like HDFS, in-memory file system like Alluxio and computation framework like Spark. Such layering introduces significant performance and management costs for copying data across layers redundantly and deciding proper resource allocation for all layers. In this paper we propose a single system called Pangea that can manage all data—both intermediate and long-lived data, and their buffer/caching, data placement optimization, and failure recovery—all in one monolithic storage system, without any layering. We present a detailed performance evaluation of Pangea and show that its performance compares favorably with several widely used layered systems such as Spark. …

Neyman-Pearson Criterion (NPC) google
We propose a new model selection criterion, the Neyman-Pearson criterion (NPC), for asymmetric binary classification problems such as cancer diagnosis, where the two types of classification errors have vastly different priorities. The NPC is a general prediction-based criterion that works for most classification methods including logistic regression, support vector machines, and random forests. We study the theoretical model selection properties of the NPC for nonparametric plug-in methods. Simulation studies show that the NPC outperforms the classical prediction-based criterion that minimizes the overall classification error under various asymmetric classification scenarios. A real data case study of breast cancer suggests that the NPC is a practical criterion that leads to the discovery of novel gene markers with both high sensitivity and specificity for breast cancer diagnosis. The NPC is available in an R package NPcriterion. …

Harmonia google
Distributed storage employs replication to mask failures and improve availability. However, these systems typically exhibit a hard tradeoff between consistency and performance. Ensuring consistency introduces coordination overhead, and as a result the system throughput does not scale with the number of replicas. We present Harmonia, a replicated storage architecture that exploits the capability of new-generation programmable switches to obviate this tradeoff by providing near-linear scalability without sacrificing consistency. To achieve this goal, Harmonia detects read-write conflicts in the network, which enables any replica to serve reads for objects with no pending writes. Harmonia implements this functionality at line rate, thus imposing no performance overhead. We have implemented a prototype of Harmonia on a cluster of commodity servers connected by a Barefoot Tofino switch, and have integrated it with Redis. We demonstrate the generality of our approach by supporting a variety of replication protocols, including primary-backup, chain replication, Viewstamped Replication, and NOPaxos. Experimental results show that Harmonia improves the throughput of these protocols by up to 10X for a replication factor of 10, providing near-linear scalability up to the limit of our testbed. …

Stochastic Distance Transform (SDT) google
The distance transform (DT) and its many variations are ubiquitous tools for image processing and analysis. In many imaging scenarios, the images of interest are corrupted by noise. This has a strong negative impact on the accuracy of the DT, which is highly sensitive to spurious noise points. In this study, we consider images represented as discrete random sets and observe statistics of DT computed on such representations. We, thus, define a stochastic distance transform (SDT), which has an adjustable robustness to noise. Both a stochastic Monte Carlo method and a deterministic method for computing the SDT are proposed and compared. Through a series of empirical tests, we demonstrate that the SDT is effective not only in improving the accuracy of the computed distances in the presence of noise, but also in improving the performance of template matching and watershed segmentation of partially overlapping objects, which are examples of typical applications where DTs are utilized. …

If you did not already know

Metric Expression Network (MEnet) google
Recent CNN-based saliency models have achieved great performance on public datasets, however, most of them are sensitive to distortion (e.g., noise, compression). In this paper, an end-to-end generic salient object segmentation model called Metric Expression Network (MEnet) is proposed to overcome this drawback. Within this architecture, we construct a new topological metric space, with the implicit metric being determined by the deep network. In this way, we succeed in grouping all the pixels within the observed image semantically within this latent space into two regions: a salient region and a non-salient region. With this method, all feature extractions are carried out at the pixel level, which makes the output boundaries of salient object fine-grained. Experimental results show that the proposed metric can generate robust salient maps that allow for object segmentation. By testing the method on several public benchmarks, we show that the performance of MEnet has achieved good results. Furthermore, the proposed method outperforms previous CNN-based methods on distorted images. …

PruneTrain google
Model pruning is a popular mechanism to make a network more efficient for inference. In this paper, we explore the use of pruning to also make the training of such neural networks more efficient. Unlike all prior model pruning methods that sparsify a pre-trained model and then prune it, we train the network from scratch, while gradually and structurally pruning parameters during the training. We build on our key observations: 1) once parameters are sparsified via regularization, they rarely re-appear in later steps, and 2) setting the appropriate regularization penalty at the beginning of training effectively converges the loss. We train ResNet and VGG networks on CIFAR10/100 and ImageNet datasets from scratch, and achieve 30-50% improvement in training FLOPs and 20-30% improvement in measured training time on modern GPUs. …

Position, Sequence and Set Similarity Measure google
In this paper the author presents a new similarity measure for strings of characters based on S3M which he expands to take into account not only the characters set and sequence but also their position. After demonstrating the superiority of this new measure and discussing the need for a self adaptive spell checker, this work is further developed into an adaptive spell checker that produces a cluster with a defined number of words for each presented misspelled word. The accuracy of this solution is measured comparing its results against the results of the most widely used spell checker. …

Blazer google
Explore your data with SQL. Easily create charts and dashboards, and share them with your team. …

If you did not already know

Tensor Core google
The NVIDIA Volta GPU microarchitecture introduces a specialized unit, called ‘Tensor Core’ that performs one matrix-multiply-and-accumulate on 4×4 matrices per clock cycle. The NVIDIA Tesla V100 accelerator, featuring the Volta microarchitecture, provides 640 Tensor Cores with a theoretical peak performance of 125 Tflops/s in mixed precision. In this paper, we investigate current approaches to program NVIDIA Tensor Cores, their performances and the precision loss due to computation in mixed precision. Currently, NVIDIA provides three different ways of programming matrix-multiply-and-accumulate on Tensor Cores: the CUDA Warp Matrix Multiply Accumulate (WMMA) API, CUTLASS, a templated library based on WMMA, and cuBLAS GEMM. After experimenting with different approaches, we found that NVIDIA Tensor Cores can deliver up to 83 Tflops/s in mixed precision on a Tesla V100 GPU, seven and three times the performance in single and half precision respectively. A WMMA implementation of batched GEMM reaches a performance of 4 Tflops/s. While precision loss due to matrix multiplication with half precision input might be critical in many HPC applications, it can be considerably reduced at the cost of increased computation. Our results indicate that HPC applications using matrix multiplications can strongly benefit from using of NVIDIA Tensor Cores. …

Movie Intelligent Recommender Agent (MIRA) google
The human mind is still an unknown process of neuroscience in many aspects. Nevertheless, for decades the scientific community has proposed computational models that try to simulate their parts, specific applications, or their behavior in different situations. The most complete model in this line is undoubtedly the LIDA model, proposed by Stan Franklin with the aim of serving as a generic computational architecture for several applications. The present project is inspired by the LIDA model to apply it to the process of movie recommendation, the model called MIRA (Movie Intelligent Recommender Agent) presented percentages of precision similar to a traditional model when submitted to the same assay conditions. Moreover, the proposed model reinforced the precision indexes when submitted to tests with volunteers, proving once again its performance as a cognitive model, when executed with small data volumes. Considering that the proposed model achieved a similar behavior to the traditional models under conditions expected to be similar for natural systems, it can be said that MIRA reinforces the applicability of LIDA as a path to be followed for the study and generation of computational agents inspired by neural behaviors. …

Hierarchical Importance Weighted Autoencoder google
Importance weighted variational inference (Burda et al., 2015) uses multiple i.i.d. samples to have a tighter variational lower bound. We believe a joint proposal has the potential of reducing the number of redundant samples, and introduce a hierarchical structure to induce correlation. The hope is that the proposals would coordinate to make up for the error made by one another to reduce the variance of the importance estimator. Theoretically, we analyze the condition under which convergence of the estimator variance can be connected to convergence of the lower bound. Empirically, we confirm that maximization of the lower bound does implicitly minimize variance. Further analysis shows that this is a result of negative correlation induced by the proposed hierarchical meta sampling scheme, and performance of inference also improves when the number of samples increases. …

Column2Vec google
We present Column2Vec, a distributed representation of database columns based on column metadata. Our distributed representation has several applications. Using known names for groups of columns (i.e., a table name), we train a model to generate an appropriate name for columns in an unnamed table. We demonstrate the viability of our approach using schema information collected from open source applications on GitHub. …

If you did not already know

GraphMP google
Recent studies showed that single-machine graph processing systems can be as highly competitive as cluster-based approaches on large-scale problems. While several out-of-core graph processing systems and computation models have been proposed, the high disk I/O overhead could significantly reduce performance in many practical cases. In this paper, we propose GraphMP to tackle big graph analytics on a single machine. GraphMP achieves low disk I/O overhead with three techniques. First, we design a vertex-centric sliding window (VSW) computation model to avoid reading and writing vertices on disk. Second, we propose a selective scheduling method to skip loading and processing unnecessary edge shards on disk. Third, we use a compressed edge cache mechanism to fully utilize the available memory of a machine to reduce the amount of disk accesses for edges. Extensive evaluations have shown that GraphMP could outperform existing single-machine out-of-core systems such as GraphChi, X-Stream and GridGraph by up to 51, and can be as highly competitive as distributed graph engines like Pregel+, PowerGraph and Chaos. …

Prediction Interval google
In statistical inference, specifically predictive inference, a prediction interval is an estimate of an interval in which future observations will fall, with a certain probability, given what has already been observed. Prediction intervals are often used in regression analysis. Prediction intervals are used in both frequentist statistics and Bayesian statistics: a prediction interval bears the same relationship to a future observation that a frequentist confidence interval or Bayesian credible interval bears to an unobservable population parameter: prediction intervals predict the distribution of individual future points, whereas confidence intervals and credible intervals of parameters predict the distribution of estimates of the true population mean or other quantity of interest that cannot be observed.
Prediction Interval, the wider sister of Confidence Interval


Snapshot Ensembles google
Ensembles of neural networks are known to be much more robust and accurate than individual networks. However, training multiple deep networks for model averaging is computationally expensive. In this paper, we propose a method to obtain the seemingly contradictory goal of ensembling multiple neural networks at no additional training cost. We achieve this goal by training a single neural network, converging to several local minima along its optimization path and saving the model parameters. To obtain repeated rapid convergence, we leverage recent work on cyclic learning rate schedules. The resulting technique, which we refer to as Snapshot Ensembling, is simple, yet surprisingly effective. We show in a series of experiments that our approach is compatible with diverse network architectures and learning tasks. It consistently yields lower error rates than state-of-the-art single models at no additional training cost, and compares favorably with traditional network ensembles. On CIFAR-10 and CIFAR-100 our DenseNet Snapshot Ensembles obtain error rates of 3.4% and 17.4% respectively.
Snapshot Ensembles in Keras


INDIAN google
We devise a learning algorithm for possibly nonsmooth deep neural networks featuring inertia and Newtonian directional intelligence only by means of a back-propagation oracle. Our algorithm, called INDIAN, has an appealing mechanical interpretation, making the role of its two hyperparameters transparent. An elementary phase space lifting allows both for its implementation and its theoretical study under very general assumptions. We handle in particular a stochastic version of our method (which encompasses usual mini-batch approaches) for nonsmooth activation functions (such as ReLU). Our algorithm shows high efficiency and reaches state of the art on image classification problems. …

If you did not already know

BO-Aug google
In recent years, deep learning has achieved remarkable achievements in many fields, including computer vision, natural language processing, speech recognition and others. Adequate training data is the key to ensure the effectiveness of the deep models. However, obtaining valid data requires a lot of time and labor resources. Data augmentation (DA) is an effective alternative approach, which can generate new labeled data based on existing data using label-preserving transformations. Although we can benefit a lot from DA, designing appropriate DA policies requires a lot of expert experience and time consumption, and the evaluation of searching the optimal policies is costly. So we raise a new question in this paper: how to achieve automated data augmentation at as low cost as possible? We propose a method named BO-Aug for automating the process by finding the optimal DA policies using the Bayesian optimization approach. Our method can find the optimal policies at a relatively low search cost, and the searched policies based on a specific dataset are transferable across different neural network architectures or even different datasets. We validate the BO-Aug on three widely used image classification datasets, including CIFAR-10, CIFAR-100 and SVHN. Experimental results show that the proposed method can achieve state-of-the-art or near advanced classification accuracy. Code to reproduce our experiments is available at https://…/BO-Aug.

GAN Augmentation google
One of the biggest issues facing the use of machine learning in medical imaging is the lack of availability of large, labelled datasets. The annotation of medical images is not only expensive and time consuming but also highly dependent on the availability of expert observers. The limited amount of training data can inhibit the performance of supervised machine learning algorithms which often need very large quantities of data on which to train to avoid overfitting. So far, much effort has been directed at extracting as much information as possible from what data is available. Generative Adversarial Networks (GANs) offer a novel way to unlock additional information from a dataset by generating synthetic samples with the appearance of real images. This paper demonstrates the feasibility of introducing GAN derived synthetic data to the training datasets in two brain segmentation tasks, leading to improvements in Dice Similarity Coefficient (DSC) of between 1 and 5 percentage points under different conditions, with the strongest effects seen fewer than ten training image stacks are available. …

Deep Back-Projection Network (DBPN) google
The feed-forward architectures of recently proposed deep super-resolution networks learn representations of low-resolution inputs, and the non-linear mapping from those to high-resolution output. However, this approach does not fully address the mutual dependencies of low- and high-resolution images. We propose Deep Back-Projection Networks (DBPN), that exploit iterative up- and down-sampling layers, providing an error feedback mechanism for projection errors at each stage. We construct mutually-connected up- and down-sampling stages each of which represents different types of image degradation and high-resolution components. We show that extending this idea to allow concatenation of features across up- and down-sampling stages (Dense DBPN) allows us to reconstruct further improve super-resolution, yielding superior results and in particular establishing new state of the art results for large scaling factors such as 8x across multiple data sets. …

BlockCNN google
We present a general technique that performs both artifact removal and image compression. For artifact removal, we input a JPEG image and try to remove its compression artifacts. For compression, we input an image and process its 8 by 8 blocks in a sequence. For each block, we first try to predict its intensities based on previous blocks; then, we store a residual with respect to the input image. Our technique reuses JPEG’s legacy compression and decompression routines. Both our artifact removal and our image compression techniques use the same deep network, but with different training weights. Our technique is simple and fast and it significantly improves the performance of artifact removal and image compression. …

If you did not already know

Fine-Tuned Language Model (FitLaM) google
Transfer learning has revolutionized computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Fine-tuned Language Models (FitLaM), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a state-of-the-art language model. Our method significantly outperforms the state-of-the-art on five text classification tasks, reducing the error by 18-24% on the majority of datasets. We open-source our pretrained models and code to enable adoption by the community. …

MixHop google
Existing popular methods for semi-supervised learning with Graph Neural Networks (such as the Graph Convolutional Network) provably cannot learn a general class of neighborhood mixing relationships. To address this weakness, we propose a new model, MixHop, that can learn these relationships, including difference operators, by repeatedly mixing feature representations of neighbors at various distances. MixHop requires no additional memory or computational complexity, and outperforms on challenging baselines. In addition, we propose sparsity regularization that allows us to visualize how the network prioritizes neighborhood information across different graph datasets. Our analysis of the learned architectures reveals that neighborhood mixing varies per datasets. …

Equilibrated Recurrent Neural Network (ERNN) google
We propose a novel {\it Equilibrated Recurrent Neural Network} (ERNN) to combat the issues of inaccuracy and instability in conventional RNNs. Drawing upon the concept of autapse in neuroscience, we propose augmenting an RNN with a time-delayed self-feedback loop. Our sole purpose is to modify the dynamics of each internal RNN state and, at any time, enforce it to evolve close to the equilibrium point associated with the input signal at that time. We show that such self-feedback helps stabilize the hidden state transitions leading to fast convergence during training while efficiently learning discriminative latent features that result in state-of-the-art results on several benchmark datasets at test-time. We propose a novel inexact Newton method to solve fixed-point conditions given model parameters for generating the latent features at each hidden state. We prove that our inexact Newton method converges locally with linear rate (under mild conditions). We leverage this result for efficient training of ERNNs based on backpropagation. …

Soft-Guided Adaptively-Dropped Neural Network (SGAD) google
Deep neural networks (DNNs) have been proven to have many redundancies. Hence, many efforts have been made to compress DNNs. However, the existing model compression methods treat all the input samples equally while ignoring the fact that the difficulties of various input samples being correctly classified are different. To address this problem, DNNs with adaptive dropping mechanism are well explored in this work. To inform the DNNs how difficult the input samples can be classified, a guideline that contains the information of input samples is introduced to improve the performance. Based on the developed guideline and adaptive dropping mechanism, an innovative soft-guided adaptively-dropped (SGAD) neural network is proposed in this paper. Compared with the 32 layers residual neural networks, the presented SGAD can reduce the FLOPs by 77% with less than 1% drop in accuracy on CIFAR-10. …