If you did not already know

Adaptive SVM+ google
Incorporating additional knowledge in the learning process can be beneficial for several computer vision and machine learning tasks. Whether privileged information originates from a source domain that is adapted to a target domain, or as additional features available at training time only, using such privileged (i.e., auxiliary) information is of high importance as it improves the recognition performance and generalization. However, both primary and privileged information are rarely derived from the same distribution, which poses an additional challenge to the recognition task. To address these challenges, we present a novel learning paradigm that leverages privileged information in a domain adaptation setup to perform visual recognition tasks. The proposed framework, named Adaptive SVM+, combines the advantages of both the learning using privileged information (LUPI) paradigm and the domain adaptation framework, which are naturally embedded in the objective function of a regular SVM. We demonstrate the effectiveness of our approach on the publicly available Animals with Attributes and INTERACT datasets and report state-of-the-art results in both of them. …

Graph Adversarial Training (GAT) google
Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (e.g., articles with citation link tend to be in the same class), graph neural networks could be more sensitive to the perturbations, since the perturbations from connected examples exacerbate the impact on a target example. Adversarial Training (AT), a dynamic regularization technique, can resist the worst-case perturbations on input features and is a promising choice to improve model robustness and generalization. However, existing AT methods focus on standard classification, being less effective when training models on graph since it does not model the impact from connected examples. In this work, we explore adversarial training on graph, aiming to improve the robustness and generalization of models learned on graph. We propose Graph Adversarial Training (GAT), which takes the impact from connected examples into account when learning to construct and resist perturbations. We give a general formulation of GAT, which can be seen as a dynamic regularization scheme based on the graph structure. To demonstrate the utility of GAT, we employ it on a state-of-the-art graph neural network model — Graph Convolutional Network (GCN). We conduct experiments on two citation graphs (Citeseer and Cora) and a knowledge graph (NELL), verifying the effectiveness of GAT which outperforms normal training on GCN by 4.51% in node classification accuracy. Codes will be released upon acceptance. …

Buffered Stochastic Variational Inference (BSVI) google
The recognition network in deep latent variable models such as variational autoencoders (VAEs) relies on amortized inference for efficient posterior approximation that can scale up to large datasets. However, this technique has also been demonstrated to select suboptimal variational parameters, often resulting in considerable additional error called the amortization gap. To close the amortization gap and improve the training of the generative model, recent works have introduced an additional refinement step that applies stochastic variational inference (SVI) to improve upon the variational parameters returned by the amortized inference model. In this paper, we propose the Buffered Stochastic Variational Inference (BSVI), a new refinement procedure that makes use of SVI’s sequence of intermediate variational proposal distributions and their corresponding importance weights to construct a new generalized importance-weighted lower bound. We demonstrate empirically that training the variational autoencoders with BSVI consistently out-performs SVI, yielding an improved training procedure for VAEs. …

Runtime Neuron Activation Pattern Monitoring google
For using neural networks in safety critical domains, it is important to know if a decision made by a neural network is supported by prior similarities in training. We propose runtime neuron activation pattern monitoring – after the standard training process, one creates a monitor by feeding the training data to the network again in order to store the neuron activation patterns in abstract form. In operation, a classification decision over an input is further supplemented by examining if a pattern similar (measured by Hamming distance) to the generated pattern is contained in the monitor. If the monitor does not contain any pattern similar to the generated pattern, it raises a warning that the decision is not based on the training data. Our experiments show that, by adjusting the similarity-threshold for activation patterns, the monitors can report a significant portion of misclassfications to be not supported by training with a small false-positive rate, when evaluated on a test set. …

If you did not already know

GP-MaL google
Exploratory data analysis is a fundamental aspect of knowledge discovery that aims to find the main characteristics of a dataset. Dimensionality reduction, such as manifold learning, is often used to reduce the number of features in a dataset to a manageable level for human interpretation. Despite this, most manifold learning techniques do not explain anything about the original features nor the true characteristics of a dataset. In this paper, we propose a genetic programming approach to manifold learning called GP-MaL which evolves functional mappings from a high-dimensional space to a lower dimensional space through the use of interpretable trees. We show that GP-MaL is competitive with existing manifold learning algorithms, while producing models that can be interpreted and re-used on unseen data. A number of promising future directions of research are found in the process. …

BioWorkbench google
Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing (HPC) techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems (SWfMS) and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process. …

Dictionary Learning (DL) google
Dictionary learning is a branch of signal processing and machine learning that aims at finding a frame (called dictionary) in which some training data admits a sparse representation. The sparser the representation, the better the dictionary.
Dictionary Learning Algorithms for Sparse Representation
Dictionary Learning


Regularized Greedy Forest (RGF) google
Regularized Greedy Forest wrapper of the ‘Regularized Greedy Forest’ <https://…/rgf_python> ‘python’ package, which also includes a Multi-core implementation (FastRGF) <https://…/fast_rgf>.

If you did not already know

Infinite Gaussian Mixture Model Coupled With (bi-Directional) Generative Adversarial Network (IGMM-GAN) google
Detecting anomalous activity in human mobility data has a number of applications including road hazard sensing, telematic based insurance, and fraud detection in taxi services and ride sharing. In this paper we address two challenges that arise in the study of anomalous human trajectories: 1) a lack of ground truth data on what defines an anomaly and 2) the dependence of existing methods on significant pre-processing and feature engineering. While generative adversarial networks seem like a natural fit for addressing these challenges, we find that existing GAN based anomaly detection algorithms perform poorly due to their inability to handle multimodal patterns. For this purpose we introduce an infinite Gaussian mixture model coupled with (bi-directional) generative adversarial networks, IGMM-GAN, that is able to generate synthetic, yet realistic, human mobility data and simultaneously facilitates multimodal anomaly detection. Through estimation of a generative probability density on the space of human trajectories, we are able to generate realistic synthetic datasets that can be used to benchmark existing anomaly detection methods. The estimated multimodal density also allows for a natural definition of outlier that we use for detecting anomalous trajectories. We illustrate our methodology and its improvement over existing GAN anomaly detection on several human mobility datasets, along with MNIST. …

DeepSwarm google
In this paper we propose DeepSwarm, a novel neural architecture search (NAS) method based on Swarm Intelligence principles. At its core DeepSwarm uses Ant Colony Optimization (ACO) to generate ant population which uses the pheromone information to collectively search for the best neural architecture. Furthermore, by using local and global pheromone update rules our method ensures the balance between exploitation and exploration. On top of this, to make our method more efficient we combine progressive neural architecture search with weight reusability. Furthermore, due to the nature of ACO our method can incorporate heuristic information which can further speed up the search process. After systematic and extensive evaluation, we discover that on three different datasets (MNIST, Fashion-MNIST, and CIFAR-10) when compared to existing systems our proposed method demonstrates competitive performance. Finally, we open source DeepSwarm as a NAS library and hope it can be used by more deep learning researchers and practitioners. …

AutoAugment google
Previous attempts for data augmentation are designed manually, and the augmentation policies are dataset-specific. Recently, an automatic data augmentation approach, named AutoAugment, is proposed using reinforcement learning. AutoAugment searches for the augmentation polices in the discrete search space, which may lead to a sub-optimal solution. In this paper, we employ the Augmented Random Search method (ARS) to improve the performance of AutoAugment. Our key contribution is to change the discrete search space to continuous space, which will improve the searching performance and maintain the diversities between sub-policies. With the proposed method, state-of-the-art accuracies are achieved on CIFAR-10, CIFAR-100, and ImageNet (without additional data). Our code is available at https://…/ARS-Aug.

NCRF++ google
This paper describes NCRF++, a toolkit for neural sequence labeling. NCRF++ is designed for quick implementation of different neural sequence labeling models with a CRF inference layer. It provides users with an inference for building the custom model structure through configuration file with flexible neural feature design and utilization. Built on PyTorch, the core operations are calculated in batch, making the toolkit efficient with the acceleration of GPU. It also includes the implementations of most state-of-the-art neural sequence labeling models such as LSTM-CRF, facilitating reproducing and refinement on those methods. …

If you did not already know

SAVOIAS google
Visual complexity identifies the level of intricacy and details in an image or the level of difficulty to describe the image. It is an important concept in a variety of areas such as cognitive psychology, computer vision and visualization, and advertisement. Yet, efforts to create large, downloadable image datasets with diverse content and unbiased groundtruthing are lacking. In this work, we introduce Savoias, a visual complexity dataset that compromises of more than 1,400 images from seven image categories relevant to the above research areas, namely Scenes, Advertisements, Visualization and infographics, Objects, Interior design, Art, and Suprematism. The images in each category portray diverse characteristics including various low-level and high-level features, objects, backgrounds, textures and patterns, text, and graphics. The ground truth for Savoias is obtained by crowdsourcing more than 37,000 pairwise comparisons of images using the forced-choice methodology and with more than 1,600 contributors. The resulting relative scores are then converted to absolute visual complexity scores using the Bradley-Terry method and matrix completion. When applying five state-of-the-art algorithms to analyze the visual complexity of the images in the Savoias dataset, we found that the scores obtained from these baseline tools only correlate well with crowdsourced labels for abstract patterns in the Suprematism category (Pearson correlation r=0.84). For the other categories, in particular, the objects and advertisement categories, low correlation coefficients were revealed (r=0.3 and 0.56, respectively). These findings suggest that (1) state-of-the-art approaches are mostly insufficient and (2) Savoias enables category-specific method development, which is likely to improve the impact of visual complexity analysis on specific application areas, including computer vision. …

Probabilistic Neural Programs google
We present probabilistic neural programs, a framework for program induction that permits flexible specification of both a computational model and inference algorithm while simultaneously enabling the use of deep neural networks. Probabilistic neural programs combine a computation graph for specifying a neural network with an operator for weighted nondeterministic choice. Thus, a program describes both a collection of decisions as well as the neural network architecture used to make each one. We evaluate our approach on a challenging diagram question answering task where probabilistic neural programs correctly execute nearly twice as many programs as a baseline model. …

OpenCLIPER google
Medical image processing is often limited by the computational cost of the involved algorithms. Whereas dedicated computing devices (GPUs in particular) exist and do provide significant efficiency boosts, they have an extra cost of use in terms of housekeeping tasks (device selection and initialization, data streaming, synchronization with the CPU and others), which may hinder developers from using them. This paper describes an OpenCL-based framework that is capable of handling dedicated computing devices seamlessly and that allows the developer to concentrate on image processing tasks. The framework handles automatically device discovery and initialization, data transfers to and from the device and the file system and kernel loading and compiling. Data structures need to be defined only once independently of the computing device; code is unique, consequently, for every device, including the host CPU. Pinned memory/buffer mapping is used to achieve maximum performance in data transfers. Code fragments included in the paper show how the computing device is almost immediately and effortlessly available to the users algorithms, so they can focus on productive work. Code required for device selection and initialization, data loading and streaming and kernel compilation is minimal and systematic. Algorithms can be thought of as mathematical operators (called processes), with input, output and parameters, and they may be chained one after another easily and efficiently. Also for efficiency, processes can have their initialization work split from their core workload, so process chains and loops do not incur in performance penalties. Algorithm code is independent of the device type targeted. …

General Algorithmic Search (GAS) google
In this paper we present a metaheuristic for global optimization called General Algorithmic Search (GAS). Specifically, GAS is a stochastic, single-objective method that evolves a swarm of agents in search of a global extremum. Numerical simulations with a sample of 31 test functions show that GAS outperforms Basin Hopping, Cuckoo Search, and Differential Evolution, especially in concurrent optimization, i.e., when several runs with different initial settings are executed and the first best wins. Python codes of all algorithms and complementary information are available online. …

If you did not already know

Interpretable Deep Gaussian Process google
We propose interpretable deep Gaussian Processes (GPs) that combine the expressiveness of deep Neural Networks (NNs) with quantified uncertainty of deep GPs. Our approach is based on approximating deep GP as a GP, which allows explicit, analytic forms for compositions of a wide variety of kernels. Consequently, our approach admits interpretation as both NNs with specified activation functions and as a variational approximation to deep GPs. We provide general recipes for deriving the effective kernels for deep GPs of two, three, or infinitely many layers, composed of homogeneous or heterogeneous kernels. Results illustrate the expressiveness of our effective kernels through samples from the prior and inference on simulated data and demonstrate advantages of interpretability by analysis of analytic forms, drawing relations and equivalences across kernels, and a priori identification of non-pathological regimes of hyperparameter space. …

Probabilistic Face Embedding (PFE) google
Embedding methods have achieved success in face recognition by comparing facial features in a latent semantic space. However, in a fully unconstrained face setting, the features learned by the embedding model could be ambiguous or may not even be present in the input face, leading to noisy representations. We propose Probabilistic Face Embeddings (PFEs), which represent each face image as a Gaussian distribution in the latent space. The mean of the distribution estimates the most likely feature values while the variance shows the uncertainty in the feature values. Probabilistic solutions can then be naturally derived for matching and fusing PFEs using the uncertainty information. Empirical evaluation on different baseline models, training datasets and benchmarks show that the proposed method can improve the face recognition performance of deterministic embeddings by converting them into PFEs. The uncertainties estimated by PFEs also serve as good indicators of the potential matching accuracy, which are important for a risk-controlled recognition system. …

Generative Parameter Sampler (GPS) google
Uncertainty quantification has been a core of the statistical machine learning, but its computational bottleneck has been a serious challenge for both Bayesians and frequentists. We propose a model-based framework in quantifying uncertainty, called predictive-matching Generative Parameter Sampler (GPS). This procedure considers an Uncertainty Quantification (UQ) distribution on the targeted parameter, which is defined as the minimizer of a distance between the empirical distribution and the resulting predictive distribution. This framework adopts a hierarchical modeling perspective such that each observation is modeled by an individual parameter. This individual parameterization permits the resulting inference to be computationally scalable and robust to outliers. Our approach is illustrated for linear models, Poisson processes, and deep neural networks for classification. The results show that the GPS is successful in providing uncertainty quantification as well as additional flexibility beyond what is allowed by classical statistical procedures under the postulated statistical models. …

Early Stopping google
In machine learning, early stopping is a form of regularization used to avoid overfitting when training a learner with an iterative method, such as gradient descent. Such methods update the learner so as to make it better fit the training data with each iteration. Up to a point, this improves the learner’s performance on data outside of the training set. Past that point, however, improving the learner’s fit to the training data comes at the expense of increased generalization error. Early stopping rules provide guidance as to how many iterations can be run before the learner begins to over-fit. Early stopping rules have been employed in many different machine learning methods, with varying amounts of theoretical foundation. …

If you did not already know

EmbraceNet google
Classification using multimodal data arises in many machine learning applications. It is crucial not only to model cross-modal relationship effectively but also to ensure robustness against loss of part of data or modalities. In this paper, we propose a novel deep learning-based multimodal fusion architecture for classification tasks, which guarantees compatibility with any kind of learning models, deals with cross-modal information carefully, and prevents performance degradation due to partial absence of data. We employ two datasets for multimodal classification tasks, build models based on our architecture and other state-of-the-art models, and analyze their performance on various situations. The results show that our architecture outperforms the other multimodal fusion architectures when some parts of data are not available. …

Flint google
Serverless architectures organized around loosely-coupled function invocations represent an emerging design for many applications. Recent work mostly focuses on user-facing products and event-driven processing pipelines. In this paper, we explore a completely different part of the application space and examine the feasibility of analytical processing on big data using a serverless architecture. We present Flint, a prototype Spark execution engine that takes advantage of AWS Lambda to provide a pure pay-as-you-go cost model. With Flint, a developer uses PySpark exactly as before, but without needing an actual Spark cluster. We describe the design, implementation, and performance of Flint, along with the challenges associated with serverless analytics. …

OTNSGA-II II google
Two important characteristics of multi-objective evolutionary algorithms are distribution and convergency. As a classic multi-objective genetic algorithm, NSGA-II is widely used in multi-objective optimization fields. However, in NSGA-II, the random population initialization and the strategy of population maintenance based on distance cannot maintain the distribution or convergency of the population well. To dispose these two deficiencies, this paper proposes an improved algorithm, OTNSGA-II II, which has a better performance on distribution and convergency. The new algorithm adopts orthogonal experiment, which selects individuals in manner of a new discontinuing non-dominated sorting and crowding distance, to produce the initial population. And a new pruning strategy based on clustering is proposed to self-adaptively prunes individuals with similar features and poor performance in non-dominated sorting and crowding distance, or to individuals are far away from the Pareto Front according to the degree of intra-class aggregation of clustering results. The new pruning strategy makes population to converge to the Pareto Front more easily and maintain the distribution of population. OTNSGA-II and NSGA-II are compared on various types of test functions to verify the improvement of OTNSGA-II in terms of distribution and convergency. …

Recursively Decomposing the function into locally Independent Subspaces (RDIS) google
Continuous optimization is an important problem in many areas of AI, including vision, robotics, probabilistic inference, and machine learning. Unfortunately, most real-world optimization problems are nonconvex, causing standard convex techniques to find only local optima, even with extensions like random restarts and simulated annealing. We observe that, in many cases, the local modes of the objective function have combinatorial structure, and thus ideas from combinatorial optimization can be brought to bear. Based on this, we propose a problem-decomposition approach to nonconvex optimization. Similarly to DPLL-style SAT solvers and recursive conditioning in probabilistic inference, our algorithm, RDIS, recursively sets variables so as to simplify and decompose the objective function into approximately independent subfunctions, until the remaining functions are simple enough to be optimized by standard techniques like gradient descent. The variables to set are chosen by graph partitioning, ensuring decomposition whenever possible. We show analytically that RDIS can solve a broad class of nonconvex optimization problems exponentially faster than gradient descent with random restarts. Experimentally, RDIS outperforms standard techniques on problems like structure from motion and protein folding.
GitXiv

If you did not already know

Regression Tsetlin Machine (RTM) google
The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and normalization mechanism; and (3) employing a feedback scheme that updates the TM clauses to minimize the regression error. The feedback scheme uses a new activation probability function that stabilizes the updating of clauses, while the overall system converges towards an accurate input-output mapping. The performance of the proposed approach is evaluated using six different artificial datasets with and without noise. The performance of the RTM is compared with the Classical Tsetlin Machine (CTM) and the Multiclass Tsetlin Machine (MTM). Our empirical results indicate that the RTM obtains the best training and testing results for both noisy and noise-free datasets, with a smaller number of clauses. This, in turn, translates to higher regression accuracy, using significantly less computational resources. …

SWNet google
Training large and highly accurate deep learning (DL) models is computationally costly. This cost is in great part due to the excessive number of trained parameters, which are well-known to be redundant and compressible for the execution phase. This paper proposes a novel transformation which changes the topology of the DL architecture such that it reaches an optimal cross-layer connectivity. This transformation leverages our important observation that for a set level of accuracy, convergence is fastest when network topology reaches the boundary of a Small-World Network. Small-world graphs are known to possess a specific connectivity structure that enables enhanced signal propagation among nodes. Our small-world models, called SWNets, provide several intriguing benefits: they facilitate data (gradient) flow within the network, enable feature-map reuse by adding long-range connections and accommodate various network architectures/datasets. Compared to densely connected networks (e.g., DenseNets), SWNets require a substantially fewer number of training parameters while maintaining a similar level of classification accuracy. We evaluate our networks on various DL model architectures and image classification datasets, namely, CIFAR10, CIFAR100, and ILSVRC (ImageNet). Our experiments demonstrate an average of ~2.1x improvement in convergence speed to the desired accuracy …

UniSent google
In this paper, we introduce UniSent a universal sentiment lexica for 1000 languages created using an English sentiment lexicon and a massively parallel corpus in the Bible domain. To the best of our knowledge, UniSent is the largest sentiment resource to date in terms of number of covered languages, including many low resource languages. To create UniSent, we propose Adapted Sentiment Pivot, a novel method that combines annotation projection, vocabulary expansion, and unsupervised domain adaptation. We evaluate the quality of UniSent for Macedonian, Czech, German, Spanish, and French and show that its quality is comparable to manually or semi-manually created sentiment resources. With the publication of this paper, we release UniSent lexica as well as Adapted Sentiment Pivot related codes. method. …

PatchNet google
The ability to visually understand and interpret learned features from complex predictive models is crucial for their acceptance in sensitive areas such as health care. To move closer to this goal of truly interpretable complex models, we present PatchNet, a network that restricts global context for image classification tasks in order to easily provide visual representations of learned texture features on a predetermined local scale. We demonstrate how PatchNet provides visual heatmap representations of the learned features, and we mathematically analyze the behavior of the network during convergence. We also present a version of PatchNet that is particularly well suited for lowering false positive rates in image classification tasks. We apply PatchNet to the classification of textures from the Describable Textures Dataset and to the ISBI-ISIC 2016 melanoma classification challenge. …

If you did not already know

Energy-based Exploration of Random Features (EERF) google
The randomized-feature approach has been successfully employed in large-scale kernel approximation and supervised learning. The distribution from which the random features are drawn impacts the number of features required to efficiently perform a learning task. Recently, it has been shown that employing data-dependent randomization improves the performance in terms of the required number of random features. In this paper, we are concerned with the randomized-feature approach in supervised learning for good generalizability. We propose the Energy-based Exploration of Random Features (EERF) algorithm based on a data-dependent score function that explores the set of possible features and exploits the promising regions. We prove that the proposed score function with high probability recovers the spectrum of the best fit within the model class. Our empirical results on several benchmark datasets further verify that our method requires smaller number of random features to achieve a certain generalization error compared to the state-of-the-art while introducing negligible pre-processing overhead. EERF can be implemented in a few lines of code and requires no additional tuning parameters. …

Weibull Hybrid Autoencoding Inference (WHAI) google
To train an inference network jointly with a deep generative topic model, making it both scalable to big corpora and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation, which infers posterior samples via a hybrid of stochastic-gradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarchy of gamma distributions, while the inference network of WHAI is a Weibull upward-downward variational autoencoder, which integrates a deterministic-upward deep neural network, and a stochastic-downward deep generative model based on a hierarchy of Weibull distributions. The Weibull distribution can be used to well approximate a gamma distribution with an analytic Kullback-Leibler divergence, and has a simple reparameterization via the uniform noise, which help efficiently compute the gradients of the evidence lower bound with respect to the parameters of the inference network. The effectiveness and efficiency of WHAI are illustrated with experiments on big corpora. …

ThumbNet google
Although deep convolutional neural networks (CNNs) have achieved great success in the computer vision community, its real-world application is still impeded by its voracious demand of computational resources. Current works mostly seek to compress the network by reducing its parameters or parameter-incurred computation, neglecting the influence of the input image on the system complexity. Based on the fact that input images of a CNN contain much redundant spatial content, we propose in this paper an efficient and unified framework, dubbed as ThumbNet, to simultaneously accelerate and compress CNN models by enabling them to infer on one thumbnail image. We provide three effective strategies to train ThumbNet. In doing so, ThumbNet learns an inference network that performs equally well on small images as the original-input network on large images. With ThumbNet, not only do we obtain the thumbnail-input inference network that can drastically reduce computation and memory requirements, but also we obtain an image downscaler that can generate thumbnail images for generic classification tasks. Extensive experiments show the effectiveness of ThumbNet, and demonstrate that the thumbnail-input inference network learned by ThumbNet can adequately retain the accuracy of the original-input network even when the input images are downscaled 16 times. …

Scalding google
Scalding is a Scala library that makes it easy to specify Hadoop MapReduce jobs. Scalding is built on top of Cascading, a Java library that abstracts away low-level Hadoop details. Scalding is comparable to Pig, but offers tight integration with Scala, bringing advantages of Scala to your MapReduce jobs. …

If you did not already know

Lost Box Recovery google
Online signature verification is the process of verifying time series signature data which is generally obtained from the tablet-based device. Unlike offline signature images, the online signature image data consists of points that are arranged in a sequence of time. The aim of this research is to develop an improved approach to map the strokes in both test and reference signatures. Current methods make use of the Dynamic Time Warping (DTW) algorithm and its variant to segment them before comparing each of its data dimension. This paper presents a modified DTW algorithm with the proposed Lost Box Recovery Algorithm aims to improve the mapping performance for online signature verification …

Statistical Ranking Color Scheme (SRCS) google
The problem of comparing a new solution method against existing ones to find statistically significant differences arises very often in sciences and engineering. When the problem instance being solved is defined by several parameters, assessing a number of methods with respect to many problem configurations simultaneously becomes a hard task. Some visualization technique is required for presenting a large number of statistical significance results in an easily interpretable way. Here we review an existing color-based approach called Statistical Ranking Color Scheme (SRCS) for displaying the results of multiple pairwise statistical comparisons between several methods assessed separately on a number of problem configurations. We introduce an R package implementing SRCS, which performs all the pairwise statistical tests from user data and generates customizable plots. We demonstrate its applicability on two examples from the areas of dynamic optimization and machine learning, in which several algorithms are compared on many problem instances, each defined by a combination of parameters. …

Propagation Network (PropNet) google
There has been an increasing interest in learning dynamics simulators for model-based control. Compared with off-the-shelf physics engines, a learnable simulator can quickly adapt to unseen objects, scenes, and tasks. However, existing models like interaction networks only work for fully observable systems; they also only consider pairwise interactions within a single time step, both restricting their use in practical systems. We introduce Propagation Networks (PropNet), a differentiable, learnable dynamics model that handles partially observable scenarios and enables instantaneous propagation of signals beyond pairwise interactions. With these innovations, our propagation networks not only outperform current learnable physics engines in forward simulation, but also achieves superior performance on various control tasks. Compared with existing deep reinforcement learning algorithms, model-based control with propagation networks is more accurate, efficient, and generalizable to novel, partially observable scenes and tasks. …

SPM-Tracker google
The greatest challenge facing visual object tracking is the simultaneous requirements on robustness and discrimination power. In this paper, we propose a SiamFC-based tracker, named SPM-Tracker, to tackle this challenge. The basic idea is to address the two requirements in two separate matching stages. Robustness is strengthened in the coarse matching (CM) stage through generalized training while discrimination power is enhanced in the fine matching (FM) stage through a distance learning network. The two stages are connected in series as the input proposals of the FM stage are generated by the CM stage. They are also connected in parallel as the matching scores and box location refinements are fused to generate the final results. This innovative series-parallel structure takes advantage of both stages and results in superior performance. The proposed SPM-Tracker, running at 120fps on GPU, achieves an AUC of 0.687 on OTB-100 and an EAO of 0.434 on VOT-16, exceeding other real-time trackers by a notable margin. …

If you did not already know

Floyd-Warshall Algorithm google
In computer science, the Floyd-Warshall algorithm is an algorithm for finding shortest paths in a weighted graph with positive or negative edge weights (but with no negative cycles).[1][2] A single execution of the algorithm will find the lengths (summed weights) of shortest paths between all pairs of vertices. Although it does not return details of the paths themselves, it is possible to reconstruct the paths with simple modifications to the algorithm. Versions of the algorithm can also be used for finding the transitive closure of a relation {\displaystyle R} R, or (in connection with the Schulze voting system) widest paths between all pairs of vertices in a weighted graph. …

node2bits google
Identity stitching, the task of identifying and matching various online references (e.g., sessions over different devices and timespans) to the same user in real-world web services, is crucial for personalization and recommendations. However, traditional user stitching approaches, such as grouping or blocking, require quadratic pairwise comparisons between a massive number of user activities, thus posing both computational and storage challenges. Recent works, which are often application-specific, heuristically seek to reduce the amount of comparisons, but they suffer from low precision and recall. To solve the problem in an application-independent way, we take a heterogeneous network-based approach in which users (nodes) interact with content (e.g., sessions, websites), and may have attributes (e.g., location). We propose node2bits, an efficient framework that represents multi-dimensional features of node contexts with binary hashcodes. node2bits leverages feature-based temporal walks to encapsulate short- and long-term interactions between nodes in heterogeneous web networks, and adopts SimHash to obtain compact, binary representations and avoid the quadratic complexity for similarity search. Extensive experiments on large-scale real networks show that node2bits outperforms traditional techniques and existing works that generate real-valued embeddings by up to 5.16% in F1 score on user stitching, while taking only up to 1.56% as much storage. …

GI-Dropout google
Dropout is used to avoid overfitting by randomly dropping units from the neural networks during training. Inspired by dropout, this paper presents GI-Dropout, a novel dropout method integrating with global information to improve neural networks for text classification. Unlike the traditional dropout method in which the units are dropped randomly according to the same probability, we aim to use explicit instructions based on global information of the dataset to guide the training process. With GI-Dropout, the model is supposed to pay more attention to inapparent features or patterns. Experiments demonstrate the effectiveness of the dropout with global information on seven text classification tasks, including sentiment analysis and topic classification. …

Feature Fusion Single Shot Multibox Detector (FSSD) google
SSD (Single Shot Multibox Detetor) is one of the best object detection algorithms with both high accuracy and fast speed. However, SSD’s feature pyramid detection method makes it hard to fuse the features from different scales. In this paper, we proposed FSSD (Feature Fusion Single Shot Multibox Detector), an enhanced SSD with a novel and lightweight feature fusion module which can improve the performance significantly over SSD with just a little speed drop. In the feature fusion module, features from different layers with different scales are concatenated together, followed by some down-sampling blocks to generate new feature pyramid, which will be fed to multibox detectors to predict the final detection results. On the Pascal VOC 2007 test, our network can achieve 82.7 mAP (mean average precision) at the speed of 65.8 FPS (frame per second) with the input size 300$\times$300 using a single Nvidia 1080Ti GPU. In addition, our result on COCO is also better than the conventional SSD with a large margin. Our FSSD outperforms a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed. Code will be made publicly available. …