Advertisements

If you did not already know

Human Activity Knowledge Engine (HAKE) google
Human activity understanding is crucial for building automatic intelligent system. With the help of deep learning, activity understanding has made huge progress recently. But some challenges such as imbalanced data distribution, action ambiguity, complex visual patterns still remain. To address these and promote the activity understanding, we build a large-scale Human Activity Knowledge Engine (HAKE) based on the human body part states. Upon existing activity datasets, we annotate the part states of all the active persons in all images, thus establish the relationship between instance activity and body part states. Furthermore, we propose a HAKE based part state recognition model with a knowledge extractor named Activity2Vec and a corresponding part state based reasoning network. With HAKE, our method can alleviate the learning difficulty brought by the long-tail data distribution, and bring in interpretability. Now our HAKE has more than 7 M+ part state annotations and is still under construction. We first validate our approach on a part of HAKE in this preliminary paper, where we show 7.2 mAP performance improvement on Human-Object Interaction recognition, and 12.38 mAP improvement on the one-shot subsets. …

SpeedReader google
Most popular web browsers include ‘reader modes’ that improve the user experience by removing un-useful page elements. Reader modes reformat the page to hide elements that are not related to the page’s main content. Such page elements include site navigation, advertising related videos and images, and most JavaScript. The intended end result is that users can enjoy the content they are interested in, without distraction. In this work, we consider whether the ‘reader mode’ can be widened to also provide performance and privacy improvements. Instead of its use as a post-render feature to clean up the clutter on a page we propose SpeedReader as an alternative multistep pipeline that is part of the rendering pipeline. Once the tool decides during the initial phase of a page load that a page is suitable for reader mode use, it directly applies document tree translation before the page is rendered. Based on our measurements, we believe that SpeedReader can be continuously enabled in order to drastically improve end-user experience, especially on slower mobile connections. Combined with our approach to predicting which pages should be rendered in reader mode with 91% accuracy, it achieves drastic speedups and bandwidth reductions of up to 27x and 84x respectively on average. We further find that our novel ‘reader mode’ approach brings with it significant privacy improvements to users. Our approach effectively removes all commonly recognized trackers, issuing 115 fewer requests to third parties, and interacts with 64 fewer trackers on average, on transformed pages. …

Contrastive Variational Autoencoder (cVAE) google
Variational autoencoders are powerful algorithms for identifying dominant latent structure in a single dataset. In many applications, however, we are interested in modeling latent structure and variation that are enriched in a target dataset compared to some background—e.g. enriched in patients compared to the general population. Contrastive learning is a principled framework to capture such enriched variation between the target and background, but state-of-the-art contrastive methods are limited to linear models. In this paper, we introduce the contrastive variational autoencoder (cVAE), which combines the benefits of contrastive learning with the power of deep generative models. The cVAE is designed to identify and enhance salient latent features. The cVAE is trained on two related but unpaired datasets, one of which has minimal contribution from the salient latent features. The cVAE explicitly models latent features that are shared between the datasets, as well as those that are enriched in one dataset relative to the other, which allows the algorithm to isolate and enhance the salient latent features. The algorithm is straightforward to implement, has a similar run-time to the standard VAE, and is robust to noise and dataset purity. We conduct experiments across diverse types of data, including gene expression and facial images, showing that the cVAE effectively uncovers latent structure that is salient in a particular analysis. …

Bilateral Segmentation Network (BiSeNet) google
Semantic segmentation requires both rich spatial information and sizeable receptive field. However, modern approaches usually compromise spatial resolution to achieve real-time inference speed, which leads to poor performance. In this paper, we address this dilemma with a novel Bilateral Segmentation Network (BiSeNet). We first design a Spatial Path with a small stride to preserve the spatial information and generate high-resolution features. Meanwhile, a Context Path with a fast downsampling strategy is employed to obtain sufficient receptive field. On top of the two paths, we introduce a new Feature Fusion Module to combine features efficiently. The proposed architecture makes a right balance between the speed and segmentation performance on Cityscapes, CamVid, and COCO-Stuff datasets. Specifically, for a 2048×1024 input, we achieve 68.4% Mean IOU on the Cityscapes test dataset with speed of 105 FPS on one NVIDIA Titan XP card, which is significantly faster than the existing methods with comparable performance. …

Advertisements

Document worth reading: “Deep Semantic Segmentation of Natural and Medical Images: A Review”

The (medical) image semantic segmentation task consists of classifying each pixel of an image (or just several ones) into an instance, where each instance (or category) corresponding to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the main deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural improvements, data synthesis-based, loss function-based improvements, sequenced models, weakly supervised, and multi-task methods and further for each group we analyzed each variant of these groups and discuss limitations of the current approaches and future research directions for semantic image segmentation. Deep Semantic Segmentation of Natural and Medical Images: A Review

If you did not already know

Linear Regression google
In statistics, linear regression is an approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variable) denoted X. The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression. (This term should be distinguished from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.)
In linear regression, data are modeled using linear predictor functions, and unknown model parameters are estimated from the data. Such models are called linear models. Most commonly, linear regression refers to a model in which the conditional mean of y given the value of X is an affine function of X. Less commonly, linear regression could refer to a model in which the median, or some other quantile of the conditional distribution of y given X is expressed as a linear function of X. Like all forms of regression analysis, linear regression focuses on the conditional probability distribution of y given X, rather than on the joint probability distribution of y and X, which is the domain of multivariate analysis.
Linear regression was the first type of regression analysis to be studied rigorously, and to be used extensively in practical applications. This is because models which depend linearly on their unknown parameters are easier to fit than models which are non-linearly related to their parameters and because the statistical properties of the resulting estimators are easier to determine.
Linear regression has many practical uses. Most applications fall into one of the following two broad categories:
· If the goal is prediction, or forecasting, or reduction, linear regression can be used to fit a predictive model to an observed data set of y and X values. After developing such a model, if an additional value of X is then given without its accompanying value of y, the fitted model can be used to make a prediction of the value of y.
· Given a variable y and a number of variables X1, …, Xp that may be related to y, linear regression analysis can be applied to quantify the strength of the relationship between y and the Xj, to assess which Xj may have no relationship with y at all, and to identify which subsets of the Xj contain redundant information about y.
Linear regression models are often fitted using the least squares approach, but they may also be fitted in other ways, such as by minimizing the ‘lack of fit’ in some other norm (as with least absolute deviations regression), or by minimizing a penalized version of the least squares loss function as in ridge regression (L2-norm penalty) and lasso (L1-norm penalty). Conversely, the least squares approach can be used to fit models that are not linear models. Thus, although the terms ‘least squares’ and ‘linear model’ are closely linked, they are not synonymous. …


Venue Analytics google
We present a method for automatically organizing and evaluating the quality of different publishing venues in Computer Science. Since this method only requires paper publication data as its input, we can demonstrate our method on a large portion of the DBLP dataset, spanning 50 years, with millions of authors and thousands of publishing venues. By formulating venue authorship as a regression problem and targeting metrics of interest, we obtain venue scores for every conference and journal in our dataset. The obtained scores can also provide a per-year model of conference quality, showing how fields develop and change over time. Additionally, these venue scores can be used to evaluate individual academic authors and academic institutions. We show that using venue scores to evaluate both authors and institutions produces quantitative measures that are comparable to approaches using citations or peer assessment. In contrast to many other existing evaluation metrics, our use of large-scale, openly available data enables this approach to be repeatable and transparent. …

Graph Warp Module (GWM) google
Recently, Graph Neural Networks (GNNs) are trending in the machine learning community as a family of architectures that specializes in capturing the features of graph-related datasets, such as those pertaining to social networks and chemical structures. Unlike for other families of the networks, the representation power of GNNs has much room for improvement, and many graph networks to date suffer from the problem of underfitting. In this paper we will introduce a Graph Warp Module, a supernode-based auxiliary network module that can be attached to a wide variety of existing GNNs in order to improve the representation power of the original networks. Through extensive experiments on molecular graph datasets, we will show that our GWM indeed alleviates the underfitting problem for various existing networks, and that it can even help create a network with the state-of-the-art generalization performance. …

Global Second-order Pooling Neural Network google
Deep Convolutional Networks (ConvNets) are fundamental to, besides large-scale visual recognition, a lot of vision tasks. As the primary goal of the ConvNets is to characterize complex boundaries of thousands of classes in a high-dimensional space, it is critical to learn higher-order representations for enhancing non-linear modeling capability. Recently, Global Second-order Pooling (GSoP), plugged at the end of networks, has attracted increasing attentions, achieving much better performance than classical, first-order networks in a variety of vision tasks. However, how to effectively introduce higher-order representation in earlier layers for improving non-linear capability of ConvNets is still an open problem. In this paper, we propose a novel network model introducing GSoP across from lower to higher layers for exploiting holistic image information throughout a network. Given an input 3D tensor outputted by some previous convolutional layer, we perform GSoP to obtain a covariance matrix which, after nonlinear transformation, is used for tensor scaling along channel dimension. Similarly, we can perform GSoP along spatial dimension for tensor scaling as well. In this way, we can make full use of the second-order statistics of the holistic image throughout a network. The proposed networks are thoroughly evaluated on large-scale ImageNet-1K, and experiments have shown that they outperformed non-trivially the counterparts while achieving state-of-the-art results. …

Document worth reading: “On-Device Machine Learning: An Algorithms and Learning Theory Perspective”

The current paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with the increasing number of smart devices and improved hardware, there is interest in performing model training on the device. Given this surge in interest, a comprehensive survey of the field from a device-agnostic perspective sets the stage for both understanding the state-of-the-art and for identifying open challenges and future avenues of research. Since on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning (including online learning, model adaptation, one/few-shot learning, etc), covering such a large number of topics in a single survey is impractical. Instead, this survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably. In addition to summarizing the state of the art, the survey also identifies a number of challenges and next steps for both the algorithmic and theoretical aspects of on-device learning. On-Device Machine Learning: An Algorithms and Learning Theory Perspective

If you did not already know

Compressed Learning (CL) google
In this paper, we provide theoretical results to show that compressed learning, learning directly in the compressed domain, is possible. In Particular, we provide tight bounds demonstrating that the linear kernel SVM’s classifier in the measurement domain, with high probability, has true accuracy close to the accuracy of the best linear threshold classifier in the data domain. We show that this is beneficial both from the compressed sensing and the machine learning points of view. Furthermore, we indicate that for a family of well-known compressed sensing matrices, compressed learning is universal, in the sense that learning and classification in the measurement domain works provided that the data are sparse in some, even unknown, basis. Moreover, we show that our results are also applicable to a family of smooth manifold-learning tasks. Finally, we support our claims with experimental results.
Compressed Learning: A Deep Neural Network Approach


CAvSAT google
An inconsistent database is a database that violates one or more integrity constraints, such as functional dependencies. Consistent Query Answering is a rigorous and principled approach to the semantics of queries posed against inconsistent databases. The consistent answers to a query on an inconsistent database is the intersection of the answers to the query on every repair, i.e., on every consistent database that differs from the given inconsistent one in a minimal way. Computing the consistent answers of a fixed conjunctive query on a given inconsistent database can be a coNP-hard problem, even though every fixed conjunctive query is efficiently computable on a given consistent database. We designed, implemented, and evaluated CAvSAT, a SAT-based system for consistent query answering. CAvSAT leverages a set of natural reductions from the complement of consistent query answering to SAT and to Weighted MaxSAT. The system is capable of handling unions of conjunctive queries and arbitrary denial constraints, which include functional dependencies as a special case. We report results from experiments evaluating CAvSAT on both synthetic and real-world databases. These results provide evidence that a SAT-based approach can give rise to a comprehensive and scalable system for consistent query answering. …

SUSIE google
We propose SUSIE, a novel summarization method that can work with state-of-the-art summarization models in order to produce structured scientific summaries for academic articles. We also created PMC-SA, a new dataset of academic publications, suitable for the task of structured summarization with neural networks. We apply SUSIE combined with three different summarization models on the new PMC-SA dataset and we show that the proposed method improves the performance of all models by as much as 4 ROUGE points. …

LR-GLM google
Due to the ease of modern data collection, applied statisticians often have access to a large set of covariates that they wish to relate to some observed outcome. Generalized linear models (GLMs) offer a particularly interpretable framework for such an analysis. In these high-dimensional problems, the number of covariates is often large relative to the number of observations, so we face non-trivial inferential uncertainty; a Bayesian approach allows coherent quantification of this uncertainty. Unfortunately, existing methods for Bayesian inference in GLMs require running times roughly cubic in parameter dimension, and so are limited to settings with at most tens of thousand parameters. We propose to reduce time and memory costs with a low-rank approximation of the data in an approach we call LR-GLM. When used with the Laplace approximation or Markov chain Monte Carlo, LR-GLM provides a full Bayesian posterior approximation and admits running times reduced by a full factor of the parameter dimension. We rigorously establish the quality of our approximation and show how the choice of rank allows a tunable computational-statistical trade-off. Experiments support our theory and demonstrate the efficacy of LR-GLM on real large-scale datasets. …

Document worth reading: “A survey of blockchain frameworks and applications”

The applications of the blockchain technology are still being discov-ered. When a new potential disruptive technology emerges, there is a tendency to try to solve every problem with that technology. However, it is still necessary to determine what approach is the best for each type of application. To find how distributed ledgers solve existing problems, this study looks for blockchain frameworks in the academic world. Identifying the existing frameworks can demonstrate where the interest in the technology exists and where it can be miss-ing. This study encountered several blockchain frameworks in development. However, there are few references to operational needs, testing, and deploy of the technology. With the widespread use of the technology, either integrating with pre-existing solutions, replacing legacy systems, or new implementations, the need for testing, deploying, exploration, and maintenance is expected to in-tensify. A survey of blockchain frameworks and applications

If you did not already know

Loss-Based AdaBoost (LoAdaBoost) google
Medical data are valuable for improvement of health care, policy making and many other purposes. Vast amount of medical data are stored in different locations ,on many different devices and in different data silos. Sharing medical data among different sources is a big challenge due to regulatory , operational and security reasons. One potential solution is federated machine learning ,which a method that sends machine learning algorithms simultaneously to all data sources ,train models in each source and aggregates the learned models. This strategy allows utilization of valuable data without moving them. In this article, we proposed an adaptive boosting method that increases the efficiency of federated machine learning. Using intensive care unit data from hospital, we showed that LoAdaBoost federated learning outperformed baseline method and increased communication efficiency at negligible additional cost. …

Graph-Based Broad Behavior-Aware Network (G-BBAN) google
In this paper, we propose a heuristic recommendation system for interactive news, called the graph-based broad behavior-aware network (G-BBAN). Different from most of existing work, our network considers six behaviors that may potentially be conducted by users, including unclick, click, like, follow, comment, and share. Further, we introduce the core and coritivity concept from graph theory into the system to measure the concentration degree of interests of each user, which we show can help to improve the performance even further if it’s considered. There are three critical steps in our recommendation system. First, we build a structured user-dependent interaction behavior graph for multi-level and multi-category data as a preprocessing step. This graph constructs the data sources and knowledge information which will be used in G-BBAN through representation learning. Second, for each user node on the graph, we calculate its core and coritivity and then add the pair as a new feature associated to this user. According to the definition of core and coritivity, this user-dependent feature provides useful insights into the concentration degree of his/her interests and affects the trade-off between accuracy and diversity of the personalized recommendation. Last, we represent item (news) information by entity semantics and environment semantics; design a multi-channel convolutional neural network called G-CNN to learn the semantic information and an attention-based LSTM to learn user’s behavior representation; combine with previous concentration feature and input into another two fully connected layers to finish the classification task. The whole network consists of the final G-BBAN. Through comparing with baselines and several variates of itself, our proposed method shows the superior performance in extensive experiments. …

Kullback-Leibler – Local Interpretable Model-agnostic Explanations (KL-LIME) google
We introduce a method, KL-LIME, for explaining predictions of Bayesian predictive models by projecting the information in the predictive distribution locally to a simpler, interpretable explanation model. The proposed approach combines the recent Local Interpretable Model-agnostic Explanations (LIME) method with ideas from Bayesian projection predictive variable selection methods. The information theoretic basis helps in navigating the trade-off between explanation fidelity and complexity. We demonstrate the method in explaining MNIST digit classifications made by a Bayesian deep convolutional neural network. …

Action2Vec google
We describe a novel cross-modal embedding space for actions, named Action2Vec, which combines linguistic cues from class labels with spatio-temporal features derived from video clips. Our approach uses a hierarchical recurrent network to capture the temporal structure of video features. We train our embedding using a joint loss that combines classification accuracy with similarity to Word2Vec semantics. We evaluate Action2Vec by performing zero shot action recognition and obtain state of the art results on three standard datasets. In addition, we present two novel analogy tests which quantify the extent to which our joint embedding captures distributional semantics. This is the first joint embedding space to combine verbs and action videos, and the first to be thoroughly evaluated with respect to its distributional semantics. …

If you did not already know

Stacked Bidirectional LSTM/GRU Network google
Videos have become ubiquitous on the Internet. And video analysis can provide lots of information for detecting and recognizing objects as well as help people understand human actions and interactions with the real world. However, facing data as huge as TB level, effective methods should be applied. Recurrent neural network (RNN) architecture has wildly been used on many sequential learning problems such as Language Model, Time-Series Analysis, etc. In this paper, we propose some variations of RNN such as stacked bidirectional LSTM/GRU network with attention mechanism to categorize large-scale video data. We also explore different multimodal fusion methods. Our model combines both visual and audio information on both video and frame level and received great result. Ensemble methods are also applied. Because of its multimodal characteristics, we decide to call this method Deep Multimodal Learning(DML). Our DML-based model was trained on Google Cloud and our own server and was tested in a well-known video classification competition on Kaggle held by Google. …

RecLab google
Different software tools have been developed with the purpose of performing offline evaluations of recommender systems. However, the results obtained with these tools may be not directly comparable because of subtle differences in the experimental protocols and metrics. Furthermore, it is difficult to analyze in the same experimental conditions several algorithms without disclosing their implementation details. For these reasons, we introduce RecLab, an open source software for evaluating recommender systems in a distributed fashion. By relying on consolidated web protocols, we created RESTful APIs for training and querying recommenders remotely. In this way, it is possible to easily integrate into the same toolkit algorithms realized with different technologies. In details, the experimenter can perform an evaluation by simply visiting a web interface provided by RecLab. The framework will then interact with all the selected recommenders and it will compute and display a comprehensive set of measures, each representing a different metric. The results of all experiments are permanently stored and publicly available in order to support accountability and comparative analyses. …

Metropolized Knockoff Sampling google
Model-X knockoffs is a wrapper that transforms essentially any feature importance measure into a variable selection algorithm, which discovers true effects while rigorously controlling the expected fraction of false positives. A frequently discussed challenge to apply this method is to construct knockoff variables, which are synthetic variables obeying a crucial exchangeability property with the explanatory variables under study. This paper introduces techniques for knockoff generation in great generality: we provide a sequential characterization of all possible knockoff distributions, which leads to a Metropolis-Hastings formulation of an exact knockoff sampler. We further show how to use conditional independence structure to speed up computations. Combining these two threads, we introduce an explicit set of sequential algorithms and empirically demonstrate their effectiveness. Our theoretical analysis proves that our algorithms achieve near-optimal computational complexity in certain cases. The techniques we develop are sufficiently rich to enable knockoff sampling in challenging models including cases where the covariates are continuous and heavy-tailed, and follow a graphical model such as the Ising model. …

Model-Based Value Expansion google
Recent model-free reinforcement learning algorithms have proposed incorporating learned dynamics models as a source of additional data with the intention of reducing sample complexity. Such methods hold the promise of incorporating imagined data coupled with a notion of model uncertainty to accelerate the learning of continuous control tasks. Unfortunately, they rely on heuristics that limit usage of the dynamics model. We present model-based value expansion, which controls for uncertainty in the model by only allowing imagination to fixed depth. By enabling wider use of learned dynamics models within a model-free reinforcement learning algorithm, we improve value estimation, which, in turn, reduces the sample complexity of learning. …

Document worth reading: “Lecture Notes: Temporal Point Processes and the Conditional Intensity Function”

These short lecture notes contain a not too technical introduction to point processes on the time line. The focus lies on defining these processes using the conditional intensity function. Furthermore, likelihood inference, methods of simulation and residual analysis for temporal point processes specified by a conditional intensity function are considered. Lecture Notes: Temporal Point Processes and the Conditional Intensity Function

Document worth reading: “Reinforcement Learning in Healthcare: A Survey”

As a subfield of machine learning, \emph{reinforcement learning} (RL) aims at empowering one’s capabilities in behavioural decision making by using interaction experience with the world and an evaluative feedback. Unlike traditional supervised learning methods that usually rely on one-shot, exhaustive and supervised reward signals, RL tackles with sequential decision making problems with sampled, evaluative and delayed feedback simultaneously. Such distinctive features make RL technique a suitable candidate for developing powerful solutions in a variety of healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged and sequential procedure. This survey will discuss the broad applications of RL techniques in healthcare domains, in order to provide the research community with systematic understanding of theoretical foundations, enabling methods and techniques, existing challenges, and new insights of this emerging paradigm. By first briefly examining theoretical foundations and key techniques in RL research from efficient and representational directions, we then provide an overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis from both unstructured and structured clinical data, as well as many other control or scheduling domains that have infiltrated many aspects of a healthcare system. Finally, we summarize the challenges and open issues in current research, and point out some potential solutions and directions for future research. Reinforcement Learning in Healthcare: A Survey