**Do Cross Modal Systems Leverage Semantic Relationships?**

Current cross-modal retrieval systems are evaluated using R@K measure which does not leverage semantic relationships rather strictly follows the manually marked image text query pairs. Therefore, current systems do not generalize well for the unseen data in the wild. To handle this, we propose a new measure, SemanticMap, to evaluate the performance of cross-modal systems. Our proposed measure evaluates the semantic similarity between the image and text representations in the latent embedding space. We also propose a novel cross-modal retrieval system using a single stream network for bidirectional retrieval. The proposed system is based on a deep neural network trained using extended center loss, minimizing the distance of image and text descriptions in the latent space from the class centers. In our system, the text descriptions are also encoded as images which enabled us to use a single stream network for both text and images. To the best of our knowledge, our work is the first of its kind in terms of employing a single stream network for cross-modal retrieval systems. The proposed system is evaluated on two publicly available datasets including MSCOCO and Flickr30K and has shown comparable results to the current state-of-the-art methods.

**On perfectness in Gaussian graphical models**

Knowing when a graphical model is perfect to a distribution is essential in order to relate separation in the graph to conditional independence in the distribution, and this is particularly important when performing inference from data. When the model is perfect, there is a one-to-one correspondence between conditional independence statements in the distribution and separation statements in the graph. Previous work has shown that almost all models based on linear directed acyclic graphs as well as Gaussian chain graphs are perfect, the latter of which subsumes Gaussian graphical models (i.e., the undirected Gaussian models) as a special case. However, the complexity of chain graph models leads to a proof of this result which is indirect and mired by the complications of parameterizing this general class. In this paper, we directly approach the problem of perfectness for the Gaussian graphical models, and provide a new proof, via a more transparent parametrization, that almost all such models are perfect. Our approach is based on, and substantially extends, a construction of Ln\v{e}ni\v{c}ka and Mat\’u\v{s} showing the existence of a perfect Gaussian distribution for any graph.

**Meta Relational Learning for Few-Shot Link Prediction in Knowledge Graphs**

Link prediction is an important way to complete knowledge graphs (KGs), while embedding-based methods, effective for link prediction in KGs, perform poorly on relations that only have a few associative triples. In this work, we propose a Meta Relational Learning (MetaR) framework to do the common but challenging few-shot link prediction in KGs, namely predicting new triples about a relation by only observing a few associative triples. We solve few-shot link prediction by focusing on transferring relation-specific meta information to make model learn the most important knowledge and learn faster, corresponding to relation meta and gradient meta respectively in MetaR. Empirically, our model achieves state-of-the-art results on few-shot link prediction KG benchmarks.

**Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis**

When a robot acquires new information, ideally it would immediately be capable of using that information to understand its environment. While deep neural networks are now widely used by robots for inferring semantic information, conventional neural networks suffer from catastrophic forgetting when they are incrementally updated, with new knowledge overwriting established representations. While a variety of approaches have been developed that attempt to mitigate catastrophic forgetting in the incremental batch learning scenario, in which an agent learns a large collection of labeled samples at once, streaming learning has been much less studied in the robotics and deep learning communities. In streaming learning, an agent learns instances one-by-one and can be tested at any time. Here, we revisit streaming linear discriminant analysis, which has been widely used in the data mining research community. By combining streaming linear discriminant analysis with deep learning, we are able to outperform both incremental batch learning and streaming learning algorithms on both ImageNet-1K and CORe50.

**Towards Realistic Practices In Low-Resource Natural Language Processing: The Development Set**

Development sets are impractical to obtain for real low-resource languages, since using all available data for training is often more effective. However, development sets are widely used in research papers that purport to deal with low-resource natural language processing (NLP). Here, we aim to answer the following questions: Does using a development set for early stopping in the low-resource setting influence results as compared to a more realistic alternative, where the number of training epochs is tuned on development languages? And does it lead to overestimation or underestimation of performance? We repeat multiple experiments from recent work on neural models for low-resource NLP and compare results for models obtained by training with and without development sets. On average over languages, absolute accuracy differs by up to 1.4%. However, for some languages and tasks, differences are as big as 18.0% accuracy. Our results highlight the importance of realistic experimental setups in the publication of low-resource NLP research results.

**Deep Morphological Neural Networks**

Mathematical morphology is a theory and technique to collect features like geometric and topological structures in digital images. Given a target image, determining suitable morphological operations and structuring elements is a cumbersome and time-consuming task. In this paper, a morphological neural network is proposed to address this problem. Serving as a nonlinear feature extracting layer in deep learning frameworks, the efficiency of the proposed morphological layer is confirmed analytically and empirically. With a known target, a single-filter morphological layer learns the structuring element correctly, and an adaptive layer can automatically select appropriate morphological operations. For practical applications, the proposed morphological neural networks are tested on several classification datasets related to shape or geometric image features, and the experimental results have confirmed the high computational efficiency and high accuracy.

**What can the brain teach us about building artificial intelligence?**

This paper is the preprint of an invited commentary on Lake et al’s Behavioral and Brain Sciences article titled ‘Building machines that learn and think like people’. Lake et al’s paper offers a timely critique on the recent accomplishments in artificial intelligence from the vantage point of human intelligence, and provides insightful suggestions about research directions for building more human-like intelligence. Since we agree with most of the points raised in that paper, we will offer a few points that are complementary.

**Model Asset eXchange: Path to Ubiquitous Deep Learning Deployment**

A recent trend observed in traditionally challenging fields such as computer vision and natural language processing has been the significant performance gains shown by deep learning (DL). In many different research fields, DL models have been evolving rapidly and become ubiquitous. Despite researchers’ excitement, unfortunately, most software developers are not DL experts and oftentimes have a difficult time following the booming DL research outputs. As a result, it usually takes a significant amount of time for the latest superior DL models to prevail in industry. This issue is further exacerbated by the common use of sundry incompatible DL programming frameworks, such as Tensorflow, PyTorch, Theano, etc. To address this issue, we propose a system, called Model Asset Exchange (MAX), that avails developers of easy access to state-of-the-art DL models. Regardless of the underlying DL programming frameworks, it provides an open source Python library (called the MAX framework) that wraps DL models and unifies programming interfaces with our standardized RESTful APIs. These RESTful APIs enable developers to exploit the wrapped DL models for inference tasks without the need to fully understand different DL programming frameworks. Using MAX, we have wrapped and open-sourced more than 30 state-of-the-art DL models from various research fields, including computer vision, natural language processing and signal processing, etc. In the end, we selectively demonstrate two web applications that are built on top of MAX, as well as the process of adding a DL model to MAX.

**Answers Unite! Unsupervised Metrics for Reinforced Summarization Models**

Abstractive summarization approaches based on Reinforcement Learning (RL) have recently been proposed to overcome classical likelihood maximization. RL enables to consider complex, possibly non-differentiable, metrics that globally assess the quality and relevance of the generated outputs. ROUGE, the most used summarization metric, is known to suffer from bias towards lexical similarity as well as from suboptimal accounting for fluency and readability of the generated abstracts. We thus explore and propose alternative evaluation measures: the reported human-evaluation analysis shows that the proposed metrics, based on Question Answering, favorably compares to ROUGE — with the additional property of not requiring reference summaries. Training a RL-based model on these metrics leads to improvements (both in terms of human or automated metrics) over current approaches that use ROUGE as a reward.

**Metric Learning from Imbalanced Data**

A key element of any machine learning algorithm is the use of a function that measures the dis/similarity between data points. Given a task, such a function can be optimized with a metric learning algorithm. Although this research field has received a lot of attention during the past decade, very few approaches have focused on learning a metric in an imbalanced scenario where the number of positive examples is much smaller than the negatives. Here, we address this challenging task by designing a new Mahalanobis metric learning algorithm (IML) which deals with class imbalance. The empirical study performed shows the efficiency of IML.

**Empirical Analysis of Knowledge Distillation Technique for Optimization of Quantized Deep Neural Networks**

Knowledge distillation (KD) is a very popular method for model size reduction. Recently, the technique is exploited for quantized deep neural networks (QDNNs) training as a way to restore the performance sacrificed by word-length reduction. KD, however, employs additional hyper-parameters, such as temperature, coefficient, and the size of teacher network for QDNN training. We analyze the effect of these hyper-parameters for QDNN optimization with KD. We find that these hyper-parameters are inter-related, and also introduce a simple and effective technique that reduces \textit{coefficient} during training. With KD employing the proposed hyper-parameters, we achieve the test accuracy of 92.7% and 67.0% on Resnet20 with 2-bit ternary weights for CIFAR-10 and CIFAR-100 data sets, respectively.

**Subset Multivariate Collective And Point Anomaly Detection**

In recent years, there has been a growing interest in identifying anomalous structure within multivariate data streams. We consider the problem of detecting collective anomalies, corresponding to intervals where one or more of the data streams behaves anomalously. We first develop a test for a single collective anomaly that has power to simultaneously detect anomalies that are either rare, that is affecting few data streams, or common. We then show how to detect multiple anomalies in a way that is computationally efficient but avoids the approximations inherent in binary segmentation-like approaches. This approach, which we call MVCAPA, is shown to consistently estimate the number and location of the collective anomalies, a property that has not previously been shown for competing methods. MVCAPA can be made robust to point anomalies and can allow for the anomalies to be imperfectly aligned. We show the practical usefulness of allowing for imperfect alignments through a resulting increase in power to detect regions of copy number variation.

**Deep Convolutional Networks in System Identification**

Recent developments within deep learning are relevant for nonlinear system identification problems. In this paper, we establish connections between the deep learning and the system identification communities. It has recently been shown that convolutional architectures are at least as capable as recurrent architectures when it comes to sequence modeling tasks. Inspired by these results we explore the explicit relationships between the recently proposed temporal convolutional network (TCN) and two classic system identification model structures; Volterra series and block-oriented models. We end the paper with an experimental study where we provide results on two real-world problems, the well-known Silverbox dataset and a newer dataset originating from ground vibration experiments on an F-16 fighter aircraft.

**Augmented Memory Networks for Streaming-Based Active One-Shot Learning**

One of the major challenges in training deep architectures for predictive tasks is the scarcity and cost of labeled training data. Active Learning (AL) is one way of addressing this challenge. In stream-based AL, observations are continuously made available to the learner that have to decide whether to request a label or to make a prediction. The goal is to reduce the request rate while at the same time maximize prediction performance. In previous research, reinforcement learning has been used for learning the AL request/prediction strategy. In our work, we propose to equip a reinforcement learning process with memory augmented neural networks, to enhance the one-shot capabilities. Moreover, we introduce Class Margin Sampling (CMS) as an extension of the standard margin sampling to the reinforcement learning setting. This strategy aims to reduce training time and improve sample efficiency in the training process. We evaluate the proposed method on a classification task using empirical accuracy of label predictions and percentage of label requests. The results indicates that the proposed method, by making use of the memory augmented networks and CMS in the training process, outperforms existing baselines.

**Mogrifier LSTM**

Many advances in Natural Language Processing have been based upon more expressive models for how inputs interact with the context in which they occur. Recurrent networks, which have enjoyed a modicum of success, still lack the generalization and systematicity ultimately required for modelling language. In this work, we propose an extension to the venerable Long Short-Term Memory in the form of mutual gating of the current input and the previous output. This mechanism affords the modelling of a richer space of interactions between inputs and their context. Equivalently, our model can be viewed as making the transition function given by the LSTM context-dependent. Experiments demonstrate markedly improved generalization on language modelling in the range of 3-4 perplexity points on Penn Treebank and Wikitext-2, and 0.01-0.05 bpc on four character-based datasets. We establish a new state of the art on all datasets with the exception of Enwik8, where we close a large gap between the LSTM and Transformer models.

**Matching Component Analysis for Transfer Learning**

We introduce a new Procrustes-type method called matching component analysis to isolate components in data for transfer learning. Our theoretical results describe the sample complexity of this method, and we demonstrate through numerical experiments that our approach is indeed well suited for transfer learning.

**Quasi-Newton Optimization Methods For Deep Learning Applications**

Deep learning algorithms often require solving a highly non-linear and nonconvex unconstrained optimization problem. Methods for solving optimization problems in large-scale machine learning, such as deep learning and deep reinforcement learning (RL), are generally restricted to the class of first-order algorithms, like stochastic gradient descent (SGD). While SGD iterates are inexpensive to compute, they have slow theoretical convergence rates. Furthermore, they require exhaustive trial-and-error to fine-tune many learning parameters. Using second-order curvature information to find search directions can help with more robust convergence for non-convex optimization problems. However, computing Hessian matrices for large-scale problems is not computationally practical. Alternatively, quasi-Newton methods construct an approximate of the Hessian matrix to build a quadratic model of the objective function. Quasi-Newton methods, like SGD, require only first-order gradient information, but they can result in superlinear convergence, which makes them attractive alternatives to SGD. The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) approach is one of the most popular quasi-Newton methods that construct positive definite Hessian approximations. In this chapter, we propose efficient optimization methods based on L-BFGS quasi-Newton methods using line search and trust-region strategies. Our methods bridge the disparity between first- and second-order methods by using gradient information to calculate low-rank updates to Hessian approximations. We provide formal convergence analysis of these methods as well as empirical results on deep learning applications, such as image classification tasks and deep reinforcement learning on a set of ATARI 2600 video games. Our results show a robust convergence with preferred generalization characteristics as well as fast training time.

**Differentially Private SQL with Bounded User Contribution**

Differential privacy (DP) provides formal guarantees that the output of a database query does not reveal too much information about any individual present in the database. While many differentially private algorithms have been proposed in the scientific literature, there are only a few end-to-end implementations of differentially private query engines. Crucially, existing systems assume that each individual is associated with at most one database record, which is unrealistic in practice. We propose a generic and scalable method to perform differentially private aggregations on databases, even when individuals can each be associated with arbitrarily many rows. We express this method as an operator in relational algebra, and implement it in an SQL engine. To validate this system, we test the utility of typical queries on industry benchmarks, and verify its correctness with a stochastic test framework we developed. We highlight the promises and pitfalls learned when deploying such a system in practice, and we publish its core components as open-source software.