If you did not already know

Label Network Embedding for Multi-Label Classification (LNEMLC) google
Multi-label classification aims to classify instances with discrete non-exclusive labels. Most approaches on multi-label classification focus on effective adaptation or transformation of existing binary and multi-class learning approaches but fail in modelling the joint probability of labels or do not preserve generalization abilities for unseen label combinations. To address these issues we propose a new multi-label classification scheme, LNEMLC – Label Network Embedding for Multi-Label Classification, that embeds the label network and uses it to extend input space in learning and inference of any base multi-label classifier. The approach allows capturing of labels’ joint probability at low computational complexity providing results comparable to the best methods reported in the literature. We demonstrate how the method reveals statistically significant improvements over the simple kNN baseline classifier. We also provide hints for selecting the robust configuration that works satisfactorily across data domains. …

Self Organizing Classifier google
Learning classifier systems (LCSs) are evolutionary machine learning algorithms, flexible enough to be applied to reinforcement, supervised and unsupervised learning problems with good performance. Recently, self organizing classifiers were proposed which are similar to LCSs but have the advantage that in its structured population no balance between niching and fitness pressure is necessary. However, more tests and analysis are required to verify its benefits. Here, a variation of the first algorithm is proposed which uses a parameterless self organizing map (SOM). This algorithm is applied in challenging problems such as big, noisy as well as dynamically changing continuous input-action mazes (growing and compressing mazes are included) with good performance. Moreover, a genetic operator is proposed which utilizes the topological information of the SOM’s population structure, improving the results. Thus, the first steps in structured evolutionary machine learning are shown, nonetheless, the problems faced are more difficult than the state-of-art continuous input-action multi-step ones. …

Iris R-CNN google
Despite the significant advances in iris segmentation, accomplishing accurate iris segmentation in non-cooperative environment remains a grand challenge. In this paper, we present a deep learning framework, referred to as Iris R-CNN, to offer superior accuracy for iris segmentation. The proposed framework is derived from Mask R-CNN, and several novel techniques are proposed to carefully explore the unique characteristics of iris. First, we propose two novel networks: (i) Double-Circle Region Proposal Network (DC-RPN), and (ii) Double-Circle Classification and Regression Network (DC-CRN) to take into account the iris and pupil circles to maximize the accuracy for iris segmentation. Second, we propose a novel normalization scheme for Regions of Interest (RoIs) to facilitate a radically new pooling operation over a double-circle region. Experimental results on two challenging iris databases, UBIRIS.v2 and MICHE, demonstrate the superior accuracy of the proposed approach over other state-of-the-art methods. …

Chat-Crowd google
In this paper we introduce Chat-crowd, an interactive environment for visual layout composition via conversational interactions. Chat-crowd supports multiple agents with two conversational roles: agents who play the role of a \emph{designer} are in charge of placing objects in an editable canvas according to instructions or commands issued by agents with a \emph{director} role. The system can be integrated with crowdsourcing platforms for both synchronous and asynchronous data collection and is equipped with comprehensive quality controls on the performance of both types of agents. We expect that this system will be useful to build multimodal goal-oriented dialog tasks that require spatial and geometric reasoning. …

If you did not already know

Neural Multi-Task Recommendation (NMTR) google
Most existing recommender systems leverage the data of one type of user behaviors only, such as the purchase behavior in E-commerce that is directly related to the business KPI (Key Performance Indicator) of conversion rate. Besides the key behavioral data, we argue that other forms of user behaviors also provide valuable signal on a user’s preference, such as views, clicks, adding a product to shop carts and so on. They should be taken into account properly to provide quality recommendation for users. In this work, we contribute a novel solution named NMTR (short for Neural Multi-Task Recommendation) for learning recommender systems from multiple types of user behaviors. We develop a neural network model to capture the complicated and multi-type interactions between users and items. In particular, our model accounts for the cascading relationship among behaviors (e.g., a user must click on a product before purchasing it). To fully exploit the signal in the data of multiple types of behaviors, we perform a joint optimization based on the multi-task learning framework, where the optimization on a behavior is treated as a task. Extensive experiments on two real-world datasets demonstrate that NMTR significantly outperforms state-of-the-art recommender systems that are designed to learn from both single-behavior data and multi-behavior data. Further analysis shows that modeling multiple behaviors is particularly useful for providing recommendation for sparse users that have very few interactions. …

Neural Lattice Decoder google
Lattice decoders constructed with neural networks are presented. Firstly, we show how the fundamental parallelotope is used as a compact set for the approximation by a neural lattice decoder. Secondly, we introduce the notion of Voronoi-reduced lattice basis. As a consequence, a first optimal neural lattice decoder is built from Boolean equations and the facets of the Voronoi region. This decoder needs no learning. Finally, we present two neural decoders with learning. It is shown that L1 regularization and a priori information about the lattice structure lead to a simplification of the model. …

Data-Enabled Predictive Control (DeePC) google
We consider the problem of optimal trajectory tracking for unknown systems. A novel data-enabled predictive control (DeePC) algorithm is presented that computes optimal and safe control policies using real-time feedback driving the unknown system along a desired trajectory while satisfying system constraints. Using a finite number of data samples from the unknown system, our proposed algorithm uses a behavioural systems theory approach to learn a non-parametric system model used to predict future trajectories. The DeePC algorithm is shown to be equivalent to the classical and widely adopted Model Predictive Control (MPC) algorithm in the case of deterministic linear time-invariant systems. In the case of nonlinear stochastic systems, we propose regularizations to the DeePC algorithm. Simulations are provided to illustrate performance and compare the algorithm with other methods. …

Pixel-Adaptive Convolution (PAC) google
Convolutions are the fundamental building block of CNNs. The fact that their weights are spatially shared is one of the main reasons for their widespread use, but it also is a major limitation, as it makes convolutions content agnostic. We propose a pixel-adaptive convolution (PAC) operation, a simple yet effective modification of standard convolutions, in which the filter weights are multiplied with a spatially-varying kernel that depends on learnable, local pixel features. PAC is a generalization of several popular filtering techniques and thus can be used for a wide range of use cases. Specifically, we demonstrate state-of-the-art performance when PAC is used for deep joint image upsampling. PAC also offers an effective alternative to fully-connected CRF (Full-CRF), called PAC-CRF, which performs competitively, while being considerably faster. In addition, we also demonstrate that PAC can be used as a drop-in replacement for convolution layers in pre-trained networks, resulting in consistent performance improvements. …

If you did not already know

Sliced Gromov-Wasserstein (SGW) google
Recently used in various machine learning contexts, the Gromov-Wasserstein distance (GW) allows for comparing distributions that do not necessarily lie in the same metric space. However, this Optimal Transport (OT) distance requires solving a complex non convex quadratic program which is most of the time very costly both in time and memory. Contrary to GW, the Wasserstein distance (W) enjoys several properties (e.g. duality) that permit large scale optimization. Among those, the Sliced Wasserstein (SW) distance exploits the direct solution of W on the line, that only requires sorting discrete samples in 1D. This paper propose a new divergence based on GW akin to SW. We first derive a closed form for GW when dealing with 1D distributions, based on a new result for the related quadratic assignment problem. We then define a novel OT discrepancy that can deal with large scale distributions via a slicing approach and we show how it relates to the GW distance while being $O(n^2)$ to compute. We illustrate the behavior of this so called Sliced Gromov-Wasserstein (SGW) discrepancy in experiments where we demonstrate its ability to tackle similar problems as GW while being several order of magnitudes faster to compute …

Circular Block Permutation With a Random Starting Point google
In a sequence of multivariate observations or non-Euclidean data objects, such as networks, local dependence is common and could lead to false change-point discoveries. We propose a new way of permutation — circular block permutation with a random starting point — to address this problem. This permutation scheme is studied on a non-parametric change-point detection framework based on a similarity graph constructed on the observations, leading to a general framework for change-point detection for data with local dependency. Simulation studies show that this new framework retains the same level of power when there is no local dependency, while it controls type I error correctly for sequences with and without local dependency. We also derive an analytic p-value approximation under this new framework. The approximation works well for sequences with length in hundreds and above, making this approach fast-applicable for long data sequences. …

Deep Evolutionary Network Structured Representation (DENSER) google
Deep Evolutionary Network Structured Representation (DENSER) is a novel approach to automatically design Artificial Neural Networks (ANNs) using Evolutionary Computation (EC). The algorithm not only searches for the best network topology (e.g., number of layers, type of layers), but also tunes hyper-parameters, such as, learning parameters or data augmentation parameters. The automatic design is achieved using a representation with two distinct levels, where the outer level encodes the general structure of the network, i.e., the sequence of layers, and the inner level encodes the parameters associated with each layer. The allowed layers and hyper-parameter value ranges are defined by means of a human-readable Context-Free Grammar. DENSER was used to evolve ANNs for two widely used image classification benchmarks obtaining an average accuracy result of up to 94.27% on the CIFAR-10 dataset, and of 78.75% on the CIFAR-100. To the best of our knowledge, our CIFAR-100 results are the highest performing models generated by methods that aim at the automatic design of Convolutional Neural Networks (CNNs), and is amongst the best for manually designed and fine-tuned CNNs . …

Large Margin Deep Network google
We present a formulation of deep learning that aims at producing a large margin classifier. The notion of margin, minimum distance to a decision boundary, has served as the foundation of several theoretically profound and empirically successful results for both classification and regression tasks. However, most large margin algorithms are applicable only to shallow models with a preset feature representation; and conventional margin methods for neural networks only enforce margin at the output layer. Such methods are therefore not well suited for deep networks. In this work, we propose a novel loss function to impose a margin on any chosen set of layers of a deep network (including input and hidden layers). Our formulation allows choosing any norm on the metric measuring the margin. We demonstrate that the decision boundary obtained by our loss has nice properties compared to standard classification loss functions. Specifically, we show improved empirical results on the MNIST, CIFAR-10 and ImageNet datasets on multiple tasks: generalization from small training sets, corrupted labels, and robustness against adversarial perturbations. The resulting loss is general and complementary to existing data augmentation (such as random/adversarial input transform) and regularization techniques (such as weight decay, dropout, and batch norm). …

If you did not already know

ShuffleNASNet google
Neural network architectures found by sophistic search algorithms achieve strikingly good test performance, surpassing most human-crafted network models by significant margins. Although computationally efficient, their design is often very complex, impairing execution speed. Additionally, finding models outside of the search space is not possible by design. While our space is still limited, we implement undiscoverable expert knowledge into the economic search algorithm Efficient Neural Architecture Search (ENAS), guided by the design principles and architecture of ShuffleNet V2. While maintaining baseline-like 2.85% test error on CIFAR-10, our ShuffleNASNets are significantly less complex, require fewer parameters, and are two times faster than the ENAS baseline in a classification task. These models also scale well to a low parameter space, achieving less than 5% test error with little regularization and only 236K parameters. …

TorMentor google
Distributed machine learning (ML) systems today use an unsophisticated threat model: data sources must trust a central ML process. We propose a brokered learning abstraction that allows data sources to contribute towards a globally-shared model with provable privacy guarantees in an untrusted setting. We realize this abstraction by building on federated learning, the state of the art in multi-party ML, to construct TorMentor: an anonymous hidden service that supports private multi-party ML. We define a new threat model by characterizing, developing and evaluating new attacks in the brokered learning setting, along with new defenses for these attacks. We show that TorMentor effectively protects data providers against known ML attacks while providing them with a tunable trade-off between model accuracy and privacy. We evaluate TorMentor with local and geo-distributed deployments on Azure/Tor. In an experiment with 200 clients and 14 MB of data per client, our prototype trained a logistic regression model using stochastic gradient descent in 65s. …

Variational Autoencoding Learning of Options by Reinforcement (VALOR) google
We explore methods for option discovery based on variational inference and make two algorithmic contributions. First: we highlight a tight connection between variational option discovery methods and variational autoencoders, and introduce Variational Autoencoding Learning of Options by Reinforcement (VALOR), a new method derived from the connection. In VALOR, the policy encodes contexts from a noise distribution into trajectories, and the decoder recovers the contexts from the complete trajectories. Second: we propose a curriculum learning approach where the number of contexts seen by the agent increases whenever the agent’s performance is strong enough (as measured by the decoder) on the current set of contexts. We show that this simple trick stabilizes training for VALOR and prior variational option discovery methods, allowing a single agent to learn many more modes of behavior than it could with a fixed context distribution. Finally, we investigate other topics related to variational option discovery, including fundamental limitations of the general approach and the applicability of learned options to downstream tasks. …

One-Factor-At-a-Time (OFAT) google
The one-factor-at-a-time method (or OFAT) is a method of designing experiments involving the testing of factors, or causes, one at a time instead of all simultaneously. Prominent text books and academic papers currently favor factorial experimental designs, a method pioneered by Sir Ronald A. Fisher, where multiple factors are changed at once. The reasons stated for favoring the use of factorial design over OFAT are:
1. OFAT requires more runs for the same precision in effect estimation
2. OFAT cannot estimate interactions
3. OFAT can miss optimal settings of factors
Despite these criticisms, some researchers have articulated a role for OFAT and showed they can be more effective than fractional factorials under certain conditions (number of runs is limited, primary goal is to attain improvements in the system, and experimental error is not large compared to factor effects, which must be additive and independent of each other). Designed experiments remain nearly always preferred to OFAT with many types and methods available, in addition to fractional factorials which, though usually requiring more runs than OFAT, do address the three concerns above. One modern design over which OFAT has no advantage in number of runs is the Plackett-Burman which, by having all factors vary simultaneously (an important quality in experimental designs), gives generally greater precision in effect estimation. …

If you did not already know

Canonical Space google
In this paper, we present some theoretical work to explain why simple gradient descent methods are so successful in solving non-convex optimization problems in learning large-scale neural networks (NN). After introducing a mathematical tool called canonical space, we have proved that the objective functions in learning NNs are convex in the canonical model space. We further elucidate that the gradients between the original NN model space and the canonical space are related by a pointwise linear transformation, which is represented by the so-called disparity matrix. Furthermore, we have proved that gradient descent methods surely converge to a global minimum of zero loss provided that the disparity matrices maintain full rank. If this full-rank condition holds, the learning of NNs behaves in the same way as normal convex optimization. At last, we have shown that the chance to have singular disparity matrices is extremely slim in large NNs. In particular, when over-parameterized NNs are randomly initialized, the gradient decent algorithms converge to a global minimum of zero loss in probability. …

Attention-based Adversarial Autoencoder Network Embedding (AAANE) google
Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a ‘one-size-fits-all’ approach when concerning multi-scale structure information, such as first- and second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an Attention-based Adversarial Autoencoder Network Embedding(AAANE) framework, which promotes the collaboration of different scales and lets them vote for robust representations. The proposed AAANE consists of two components: 1) Attention-based autoencoder effectively capture the highly non-linear network structure, which can de-emphasize irrelevant scales during training. 2) An adversarial regularization guides the autoencoder learn robust representations by matching the posterior distribution of the latent embeddings to given prior distribution. This is the first attempt to introduce attention mechanisms to multi-scale network embedding. Experimental results on real-world networks show that our learned attention parameters are different for every network and the proposed approach outperforms existing state-of-the-art approaches for network embedding. …

Cascade GAN google
We deconstruct the performance of GANs into three components: 1. Formulation: we propose a perturbation view of the population target of GANs. Building on this interpretation, we show that GANs can be viewed as a generalization of the robust statistics framework, and propose a novel GAN architecture, termed as Cascade GANs, to provably recover meaningful low-dimensional generator approximations when the real distribution is high-dimensional and corrupted by outliers. 2. Generalization: given a population target of GANs, we design a systematic principle, projection under admissible distance, to design GANs to meet the population requirement using finite samples. We implement our principle in three cases to achieve polynomial and sometimes near-optimal sample complexities: (1) learning an arbitrary generator under an arbitrary pseudonorm; (2) learning a Gaussian location family under total variation distance, where we utilize our principle provide a new proof for the optimality of Tukey median viewed as GANs; (3) learning a low-dimensional Gaussian approximation of a high-dimensional arbitrary distribution under Wasserstein distance. We demonstrate a fundamental trade-off in the approximation error and statistical error in GANs, and show how to apply our principle with empirical samples to predict how many samples are sufficient for GANs in order not to suffer from the discriminator winning problem. 3. Optimization: we demonstrate alternating gradient descent is provably not even locally stable in optimizating the GAN formulation of PCA. We diagnose the problem as the minimax duality gap being non-zero, and propose a new GAN architecture whose duality gap is zero, where the value of the game is equal to the previous minimax value (not the maximin value). We prove the new GAN architecture is globally stable in optimization under alternating gradient descent. …

Mean First Passage Time based DYNA (MFPT-DYNA) google
We propose a hybrid approach aimed at improving the sample efficiency in goal-directed reinforcement learning. We do this via a two-step mechanism where firstly, we approximate a model from Model-Free reinforcement learning. Then, we leverage this approximate model along with a notion of reachability using Mean First Passage Times to perform Model-Based reinforcement learning. Built on such a novel observation, we design two new algorithms – Mean First Passage Time based Q-Learning (MFPT-Q) and Mean First Passage Time based DYNA (MFPT-DYNA), that have been fundamentally modified from the state-of-the-art reinforcement learning techniques. Preliminary results have shown that our hybrid approaches converge with much fewer iterations than their corresponding state-of-the-art counterparts and therefore requiring much fewer samples and much fewer training trials to converge. …

If you did not already know

Hybrid Forest google
Nowadays with a growing number of online controlling systems in the organization and also a high demand of monitoring and stats facilities that uses data streams to log and control their subsystems, data stream mining becomes more and more vital. Hoeffding Trees (also called Very Fast Decision Trees a.k.a. VFDT) as a Big Data approach in dealing with the data stream for classification and regression problems showed good performance in handling facing challenges and making the possibility of any-time prediction. Although these methods outperform other methods e.g. Artificial Neural Networks (ANN) and Support Vector Regression (SVR), they suffer from high latency in adapting with new concepts when the statistical distribution of incoming data changes. In this article, we introduced a new algorithm that can detect and handle concept drift phenomenon properly. This algorithms also benefits from fast startup ability which helps systems to be able to predict faster than other algorithms at the beginning of data stream arrival. We also have shown that our approach will overperform other controversial approaches for classification and regression tasks. …

StarNEig google
In this paper, we present the StarNEig library for solving dense non-symmetric (generalized) eigenvalue problems. The library is built on top of the StarPU runtime system and targets both shared and distributed memory machines. Some components of the library support GPUs. The library is currently in an early beta state and only real arithmetic is supported. Support for complex data types is planned for a future release. This paper is aimed for potential users of the library. We describe the design choices and capabilities of the library, and contrast them to existing software such as ScaLAPACK. StarNEig implements a ScaLAPACK compatibility layer that should make it easy for a new user to transition to StarNEig. We demonstrate the performance of the library with a small set of computational experiments. …

Neumann Network google
Many challenging image processing tasks can be described by an ill-posed linear inverse problem: deblurring, deconvolution, inpainting, compressed sensing, and superresolution all lie in this framework. Traditional inverse problem solvers minimize a cost function consisting of a data-fit term, which measures how well an image matches the observations, and a regularizer, which reflects prior knowledge and promotes images with desirable properties like smoothness. Recent advances in machine learning and image processing have illustrated that it is often possible to learn a regularizer from training data that can outperform more traditional regularizers. We present an end-to-end, data-driven method of solving inverse problems inspired by the Neumann series, which we call a Neumann network. Rather than unroll an iterative optimization algorithm, we truncate a Neumann series which directly solves the linear inverse problem with a data-driven nonlinear regularizer. The Neumann network architecture outperforms traditional inverse problem solution methods, model-free deep learning approaches, and state-of-the-art unrolled iterative methods on standard datasets. Finally, when the images belong to a union of subspaces and under appropriate assumptions on the forward model, we prove there exists a Neumann network configuration that well-approximates the optimal oracle estimator for the inverse problem and demonstrate empirically that the trained Neumann network has the form predicted by theory. …

Heterogeneous Deep Discriminative Model (HDDM) google
This paper presents a new deep learning approach for video-based scene classification. We design a Heterogeneous Deep Discriminative Model (HDDM) whose parameters are initialized by performing an unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBM). In order to avoid the redundancy of adjacent frames, we extract spatiotemporal variation patterns within frames and represent them sparsely using Sparse Cubic Symmetrical Pattern (SCSP). Then, a pre-initialized HDDM is separately trained using the videos of each class to learn class-specific models. According to the minimum reconstruction error from the learnt class-specific models, a weighted voting strategy is employed for the classification. The performance of the proposed method is extensively evaluated on two action recognition datasets; UCF101 and Hollywood II, and three dynamic texture and dynamic scene datasets; DynTex, YUPENN, and Maryland. The experimental results and comparisons against state-of-the-art methods demonstrate that the proposed method consistently achieves superior performance on all datasets. …

If you did not already know

Boomerang google
Paid crowdsourcing platforms suffer from low-quality work and unfair rejections, but paradoxically, most workers and requesters have high reputation scores. These inflated scores, which make high-quality work and workers difficult to find, stem from social pressure to avoid giving negative feedback. We introduce Boomerang, a reputation system for crowdsourcing that elicits more accurate feedback by rebounding the consequences of feedback directly back onto the person who gave it. With Boomerang, requesters find that their highly-rated workers gain earliest access to their future tasks, and workers find tasks from their highly-rated requesters at the top of their task feed. Field experiments verify that Boomerang causes both workers and requesters to provide feedback that is more closely aligned with their private opinions. Inspired by a game-theoretic notion of incentive-compatibility, Boomerang opens opportunities for interaction design to incentivize honest reporting over strategic dishonesty. …

Model Predictive Control google
Model predictive control (MPC) is an advanced method of process control that is used to control a process while satisfying a set of constraints. It has been in use in the process industries in chemical plants and oil refineries since the 1980s. In recent years it has also been used in power system balancing models and in power electronics. Model predictive controllers rely on dynamic models of the process, most often linear empirical models obtained by system identification. The main advantage of MPC is the fact that it allows the current timeslot to be optimized, while keeping future timeslots in account. This is achieved by optimizing a finite time-horizon, but only implementing the current timeslot and then optimizing again, repeatedly, thus differing from Linear-Quadratic Regulator (LQR). Also MPC has the ability to anticipate future events and can take control actions accordingly. Proportional-Integral-Derivative (PID) controllers do not have this predictive ability. MPC is nearly universally implemented as a digital control, although there is research into achieving faster response times with specially designed analog circuitry. …

Symbiosis google
The 20th century paradigm of paper forms and typewriters lives on in most of today’s User Interfaces. This kind of UI is adequate for repeatable tasks, but not for highly dynamic, situation-driven activities. The ubiquity of new devices with amazing capabilities has opened the door for a completely new way of working with computers: Combining the respective strengths of human and computer by means of frictionless interaction. …

Supervised Policy Update google
We propose a new sample-efficient methodology, called Supervised Policy Update (SPU), for deep reinforcement learning. Starting with data generated by the current policy, SPU optimizes over the proximal policy space to find a non-parameterized policy. It then solves a supervised regression problem to convert the non-parameterized policy to a parameterized policy, from which it draws new samples. There is significant flexibility in setting the labels in the supervised regression problem, with different settings corresponding to different underlying optimization problems. We develop a methodology for finding an optimal policy in the non-parameterized policy space, and show how Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) can be addressed by this methodology. In terms of sample efficiency, our experiments show SPU can outperform PPO for simulated robotic locomotion tasks. …

If you did not already know

Ontology Based Data Access (OBDA) google
Ontology-based data access is concerned with querying incomplete data sources in the presence of domain-specific knowledge provided by an ontology. A central notion in this setting is that of an ontology-mediated query, which is a database query coupled with an ontology.
Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP


Online Portfolio Selection (OLPS) google
Online portfolio selection, which sequentially selects a portfolio over a set of assets in order to achieve certain targets, is a natural and important task for asset portfolio management. Aiming to maximize the cumulative wealth, several categories of algorithms have been proposed to solve this task. One category of algorithms-Follow theWinner- tries to asymptotically achieve the same growth rate (expected log return) as that of an optimal strategy, which is often based on the CGT. The second category-Follow the Loser-transfers the wealth from winning assets to losers, which seems contradictory to the common sense but empirically often achieves significantly better performance. Finally, the third category-Pattern Matching-based approaches-tries to predict the next market distribution based on a sample of historical data and explicitly optimizes the portfolio based on the sampled distribution. Although these three categories are focused on a single strategy (class), there are also some other strategies that focus on combining multiple strategies (classes)-Meta-Learning Algorithms (MLAs).


Random Projection google
Random Projection is a foundational research topic that connects a bunch of machine learning algorithms under a similar mathematical basis. It is used to reduce the dimensionality of the dataset by projecting the data points efficiently to a smaller dimensions while preserving the original relative distance between the data points. In this paper, we are intended to explain random projection method, by explaining its mathematical background and foundation, the applications that are currently adopting it, and an overview on its current research perspective. …

Iterative Self-Organizing Data Analysis Technique (ISODATA) google
This is a more sophisticated algorithm which allows the number of clusters to be automatically adjusted during the iteration by merging similar clusters and splitting clusters with large standard deviations. …

If you did not already know

Composite Indicator (COIN) google
A composite indicator is formed when individual indicators are compiled into a single index, on the basis of an underlying model of the multi-dimensional concept that is being measured. A composite indicator measures multi-dimensional concepts (e.g. competitiveness, e-trade or environmental quality) which cannot be captured by a single indicator. Ideally, a composite indicator should be based on a theoretical framework / definition, which allows individual indicators / variables to be selected, combined and weighted in a manner which reflects the dimensions or structure of the phenomena being measured. …

GSimCNN google
Graph Edit Distance (GED) computation is a core operation of many widely-used graph applications, such as graph classification, graph matching, and graph similarity search. However, computing the exact GED between two graphs is NP-complete. Most current approximate algorithms are based on solving a combinatorial optimization problem, which involves complicated design and high time complexity. In this paper, we propose a novel end-to-end neural network based approach to GED approximation, aiming to alleviate the computational burden while preserving good performance. The proposed approach, named GSimCNN, turns GED computation into a learning problem. Each graph is considered as a set of nodes, represented by learnable embedding vectors. The GED computation is then considered as a two-set matching problem, where a higher matching score leads to a lower GED. A Convolutional Neural Network (CNN) based approach is proposed to tackle the set matching problem. We test our algorithm on three real graph datasets, and our model achieves significant performance enhancement against state-of-the-art approximate GED computation algorithms. …

DeepAtlas google
Deep convolutional neural networks (CNNs) are state-of-the-art for semantic image segmentation, but typically require many labeled training samples. Obtaining 3D segmentations of medical images for supervised training is difficult and labor intensive. Motivated by classical approaches for joint segmentation and registration we therefore propose a deep learning framework that jointly learns networks for image registration and image segmentation. In contrast to previous work on deep unsupervised image registration, which showed the benefit of weak supervision via image segmentations, our approach can use existing segmentations when available and computes them via the segmentation network otherwise, thereby providing the same registration benefit. Conversely, segmentation network training benefits from the registration, which essentially provides a realistic form of data augmentation. Experiments on knee and brain 3D magnetic resonance (MR) images show that our approach achieves large simultaneous improvements of segmentation and registration accuracy (over independently trained networks) and allows training high-quality models with very limited training data. Specifically, in a one-shot-scenario (with only one manually labeled image) our approach increases Dice scores (%) over an unsupervised registration network by 2.7 and 1.8 on the knee and brain images respectively. …

HierLPR google
In this article we propose a novel ranking algorithm, referred to as HierLPR, for the multi-label classification problem when the candidate labels follow a known hierarchical structure. HierLPR is motivated by a new metric called eAUC that we design to assess the ranking of classification decisions. This metric, associated with the hit curve and local precision rate, emphasizes the accuracy of the first calls. We show that HierLPR optimizes eAUC under the tree constraint and some light assumptions on the dependency between the nodes in the hierarchy. We also provide a strategy to make calls for each node based on the ordering produced by HierLPR, with the intent of controlling FDR or maximizing F-score. The performance of our proposed methods is demonstrated on synthetic datasets as well as a real example of disease diagnosis using NCBI GEO datasets. In these cases, HierLPR shows a favorable result over competing methods in the early part of the precision-recall curve. …

If you did not already know

Montreal Data License (MDL) google
This paper provides a taxonomy for the licensing of data in the fields of artificial intelligence and machine learning. The paper’s goal is to build towards a common framework for data licensing akin to the licensing of open source software. Increased transparency and resolving conceptual ambiguities in existing licensing language are two noted benefits of the approach proposed in the paper. In parallel, such benefits may help foster fairer and more efficient markets for data through bringing about clearer tools and concepts that better define how data can be used in the fields of AI and ML. The paper’s approach is summarized in a new family of data license language – \textit{the Montreal Data License (MDL)}. Alongside this new license, the authors and their collaborators have developed a web-based tool to generate license language espousing the taxonomies articulated in this paper. …

Social Network Analysis (SNA) google
Social network analysis (SNA) is a strategy for investigating social structures through the use of network and graph theories. It characterizes networked structures in terms of nodes (individual actors, people, or things within the network) and the ties or edges (relationships or interactions) that connect them. Examples of social structures commonly visualized through social network analysis include social media networks, friendship and acquaintance networks, kinship, disease transmission,and sexual relationships. These networks are often visualized through sociograms in which nodes are represented as points and ties are represented as lines. Social network analysis has emerged as a key technique in modern sociology. It has also gained a significant following in anthropology, biology, communication studies, economics, geography, history, information science, organizational studies, political science, social psychology, development studies, and sociolinguistics and is now commonly available as a consumer tool. …

TUCRL google
While designing the state space of an MDP, it is common to include states that are transient or not reachable by any policy (e.g., in mountain car, the product space of speed and position contains configurations that are not physically reachable). This leads to defining weakly-communicating or multi-chain MDPs. In this paper, we introduce \tucrl, the first algorithm able to perform efficient exploration-exploitation in any finite Markov Decision Process (MDP) without requiring any form of prior knowledge. In particular, for any MDP with $S^{\texttt{C}}$ communicating states, $A$ actions and $\Gamma^{\texttt{C}} \leq S^{\texttt{C}}$ possible communicating next states, we derive a $\widetilde{O}(D^{\texttt{C}} \sqrt{\Gamma^{\texttt{C}} S^{\texttt{C}} AT})$ regret bound, where $D^{\texttt{C}}$ is the diameter (i.e., the longest shortest path) of the communicating part of the MDP. This is in contrast with optimistic algorithms (e.g., UCRL, Optimistic PSRL) that suffer linear regret in weakly-communicating MDPs, as well as posterior sampling or regularised algorithms (e.g., REGAL), which require prior knowledge on the bias span of the optimal policy to bias the exploration to achieve sub-linear regret. We also prove that in weakly-communicating MDPs, no algorithm can ever achieve a logarithmic growth of the regret without first suffering a linear regret for a number of steps that is exponential in the parameters of the MDP. Finally, we report numerical simulations supporting our theoretical findings and showing how TUCRL overcomes the limitations of the state-of-the-art. …

Dialogue Description (Dial2Desc) google
We first propose a new task named Dialogue Description (Dial2Desc). Unlike other existing dialogue summarization tasks such as meeting summarization, we do not maintain the natural flow of a conversation but describe an object or an action of what people are talking about. The Dial2Desc system takes a dialogue text as input, then outputs a concise description of the object or the action involved in this conversation. After reading this short description, one can quickly extract the main topic of a conversation and build a clear picture in his mind, without reading or listening to the whole conversation. Based on the existing dialogue dataset, we build a new dataset, which has more than one hundred thousand dialogue-description pairs. As a step forward, we demonstrate that one can get more accurate and descriptive results using a new neural attentive model that exploits the interaction between utterances from different speakers, compared with other baselines. …