If you did not already know

Incremental Sparse Bayesian Ordinal Regression (ISBOR) google
Ordinal Regression (OR) aims to model the ordering information between different data categories, which is a crucial topic in multi-label learning. An important class of approaches to OR models the problem as a linear combination of basis functions that map features to a high dimensional non-linear space. However, most of the basis function-based algorithms are time consuming. We propose an incremental sparse Bayesian approach to OR tasks and introduce an algorithm to sequentially learn the relevant basis functions in the ordinal scenario. Our method, called Incremental Sparse Bayesian Ordinal Regression (ISBOR), automatically optimizes the hyper-parameters via the type-II maximum likelihood method. By exploiting fast marginal likelihood optimization, ISBOR can avoid big matrix inverses, which is the main bottleneck in applying basis function-based algorithms to OR tasks on large-scale datasets. We show that ISBOR can make accurate predictions with parsimonious basis functions while offering automatic estimates of the prediction uncertainty. Extensive experiments on synthetic and real word datasets demonstrate the efficiency and effectiveness of ISBOR compared to other basis function-based OR approaches. …

Softer-Non-Maximum Suppression (Softer-NMS) google
Non-maximum suppression (NMS) is essential for state-of-the-art object detectors to localize object from a set of candidate locations. However, accurate candidate location sometimes is not associated with a high classification score, which leads to object localization failure during NMS. In this paper, we introduce a novel bounding box regression loss for learning bounding box transformation and localization variance together. The resulting localization variance exhibits a strong connection to localization accuracy, which is then utilized in our new non-maximum suppression method to improve localization accuracy for object detection. On MS-COCO, we boost the AP of VGG-16 faster R-CNN from 23.6% to 29.1% with a single model and nearly no additional computational overhead. More importantly, our method is able to improve the AP of ResNet-50 FPN fast R-CNN from 36.8% to 37.8%, which achieves state-of-the-art bounding box refinement result. …

Principal Filter Analysis (PFA) google
Principal Filter Analysis (PFA), is an elegant, easy to implement, yet effective methodology for neural network compression. PFA exploits the intrinsic correlation between filter responses within network layers to recommend a smaller network footprint. …

Collective Intelligence (COIN) google
Collective Intelligence is shared or group intelligence that emerges from the collaboration, collective efforts, and competition of many individuals and appears in consensus decision making. The term appears in sociobiology, political science and in context of mass peer review and crowdsourcing applications. It may involve consensus, social capital and formalisms such as voting systems, social media and other means of quantifying mass activity. Collective IQ is a measure of collective intelligence, although it is often used interchangeably with the term collective intelligence. (‘Building new conclusions from independent contributors is really what collective intelligence is all about.’)
“Probability Collectives”
http://…/0251.pdf

If you did not already know

Multiplicative Latent Force Model google
Bayesian modelling of dynamic systems must achieve a compromise between providing a complete mechanistic specification of the process while retaining the flexibility to handle those situations in which data is sparse relative to model complexity, or a full specification is hard to motivate. Latent force models achieve this dual aim by specifying a parsimonious linear evolution equation which an additive latent Gaussian process (GP) forcing term. In this work we extend the latent force framework to allow for multiplicative interactions between the GP and the latent states leading to more control over the geometry of the trajectories. Unfortunately inference is no longer straightforward and so we introduce an approximation based on the method of successive approximations and examine its performance using a simulation study. …

Articulate google
Articulate is a platform for building conversational interfaces with intelligent agents. Articulate is an open source project that will allow you to take control of you conversational interfaces, without being worried where and how your data is stored. Also, Articulate is built with an user-centered design where the main goal is to make experts and beginners feel comfortable when building their intelligent agents.
The main features of Articulate are:
• Open source project
• Based on Rasa NLU
• Docker and docker-compose based (Easy to set up locally and in the cloud)
• Awesome UI/UX
• Webhook connection
• Response formatting
• Handlebars.js for template responses
• Community support on Gitter and Github
Articulates makes it super easy to get up and running with Rasa NLU. You´ll be guided as you build and train your custom agent using our friendly and intuitive interface. …


Structured Control Net (SCN) google
In recent years, Deep Reinforcement Learning has made impressive advances in solving several important benchmark problems for sequential decision making. Many control applications use a generic multilayer perceptron (MLP) for non-vision parts of the policy network. In this work, we propose a new neural network architecture for the policy network representation that is simple yet effective. The proposed Structured Control Net (SCN) splits the generic MLP into two separate sub-modules: a nonlinear control module and a linear control module. Intuitively, the nonlinear control is for forward-looking and global control, while the linear control stabilizes the local dynamics around the residual of global control. We hypothesize that this will bring together the benefits of both linear and nonlinear policies: improve training sample efficiency, final episodic reward, and generalization of learned policy, while requiring a smaller network and being generally applicable to different training methods. We validated our hypothesis with competitive results on simulations from OpenAI MuJoCo, Roboschool, Atari, and a custom 2D urban driving environment, with various ablation and generalization tests, trained with multiple black-box and policy gradient training methods. The proposed architecture has the potential to improve upon broader control tasks by incorporating problem specific priors into the architecture. As a case study, we demonstrate much improved performance for locomotion tasks by emulating the biological central pattern generators (CPGs) as the nonlinear part of the architecture. …

Distributionally Robust Stochastic Optimization (DRSO) google
A central question in statistical learning is to design algorithms that not only perform well on training data, but also generalize to new and unseen data. In this paper, we tackle this question by formulating a distributionally robust stochastic optimization (DRSO) problem, which seeks a solution that minimizes the worst-case expected loss over a family of distributions that are close to the empirical distribution in Wasserstein distances. We establish a connection between such Wasserstein DRSO and regularization. More precisely, we identify a broad class of loss functions, for which the Wasserstein DRSO is asymptotically equivalent to a regularization problem with a gradient-norm penalty. Such relation provides new interpretations for problems involving regularization, including a great number of statistical learning problems and discrete choice models (e.g. multinomial logit). The connection suggests a principled way to regularize high-dimensional, non-convex problems. This is demonstrated through two applications: the training of Wasserstein generative adversarial networks (WGANs) in deep learning, and learning heterogeneous consumer preferences with mixed logit choice model. …

If you did not already know

Retrieval-Enhanced Adversarial Training (REAT) google
Dialogue systems are usually built on either generation-based or retrieval-based approaches, yet they do not benefit from the advantages of different models. In this paper, we propose a Retrieval-Enhanced Adversarial Training (REAT) method for neural response generation. Distinct from existing approaches, the REAT method leverages an encoder-decoder framework in terms of an adversarial training paradigm, while taking advantage of N-best response candidates from a retrieval-based system to construct the discriminator. An empirical study on a large scale public available benchmark dataset shows that the REAT method significantly outperforms the vanilla Seq2Seq model as well as the conventional adversarial training approach. …

AdaGAN google
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) are an effective method for training generative models of complex data such as natural images. However, they are notoriously hard to train and can suffer from the problem of missing modes where the model is not able to produce examples in certain regions of the space. We propose an iterative procedure, called AdaGAN, where at every step we add a new component into a mixture model by running a GAN algorithm on a reweighted sample. This is inspired by boosting algorithms, where many potentially weak individual predictors are greedily aggregated to form a strong composite predictor. We prove that such an incremental procedure leads to convergence to the true distribution in a finite number of steps if each step is optimal, and convergence at an exponential rate otherwise. We also illustrate experimentally that this procedure addresses the problem of missing modes. …

DNA Computing google
DNA computing is a branch of computing which uses DNA, biochemistry, and molecular biology hardware, instead of the traditional silicon-based computer technologies. Research and development in this area concerns theory, experiments, and applications of DNA computing. The term ‘molectronics’ has sometimes been used, but this term had already been used for an earlier technology, a then-unsuccessful rival of the first integrated circuits; this term has also been used more generally, for molecular-scale electronic technology. …

CLINIcal Question Answering system (CLINIQA) google
The recent developments in the field of biomedicine have made large volumes of biomedical literature available to the medical practitioners. Due to the large size and lack of efficient searching strategies, medical practitioners struggle to obtain necessary information available in the biomedical literature. Moreover, the most sophisticated search engines of age are not intelligent enough to interpret the clinicians’ questions. These facts reflect the urgent need of an information retrieval system that accepts the queries from medical practitioners’ in natural language and returns the answers quickly and efficiently. In this paper, we present an implementation of a machine intelligence based CLINIcal Question Answering system (CLINIQA) to answer medical practitioner’s questions. The system was rigorously evaluated on different text mining algorithms and the best components for the system were selected. The system makes use of Unified Medical Language System for semantic analysis of both questions and medical documents. In addition, the system employs supervised machine learning algorithms for classification of the documents, identifying the focus of the question and answer selection. Effective domain-specific heuristics are designed for answer ranking. The performance evaluation on hundred clinical questions shows the effectiveness of our approach. …

If you did not already know

ATMSeer google
To relieve the pain of manually selecting machine learning algorithms and tuning hyperparameters, automated machine learning (AutoML) methods have been developed to automatically search for good models. Due to the huge model search space, it is impossible to try all models. Users tend to distrust automatic results and increase the search budget as much as they can, thereby undermining the efficiency of AutoML. To address these issues, we design and implement ATMSeer, an interactive visualization tool that supports users in refining the search space of AutoML and analyzing the results. To guide the design of ATMSeer, we derive a workflow of using AutoML based on interviews with machine learning experts. A multi-granularity visualization is proposed to enable users to monitor the AutoML process, analyze the searched models, and refine the search space in real time. We demonstrate the utility and usability of ATMSeer through two case studies, expert interviews, and a user study with 13 end users. …

semi-MapReduce google
Graph problems are troublesome when it comes to MapReduce. Typically, to be able to design algorithms that make use of the advantages of MapReduce, assumptions beyond what the model imposes, such as the {\em density} of the input graph, are required. In a recent shift, a simple and robust model of MapReduce for graph problems, where the space per machine is set to be $O(|V|)$ has attracted considerable attention. We term this model {\em semi-MapReduce}, or in short, semi-MPC, and focus on its computational power. In this short note, we show through a set of simulation methods that semi-MPC is, perhaps surprisingly, almost equivalent to the congested clique model of distributed computing. However, semi-MPC, in addition to round complexity, incorporates another practically important dimension to optimize: the number of machines. Furthermore, we show that algorithms in other distributed computing models, such as CONGEST, can be simulated to run in the same number of rounds of semiMPC while also using an optimal number of machines. We later show the implications of these simulation methods by obtaining improved algorithms for these models using the recent algorithms that have been developed. …

Semantic-Aware DIscrete Hashing (SADIH) google
Due to its low storage cost and fast query speed, hashing has been recognized to accomplish similarity search in large-scale multimedia retrieval applications. Particularly supervised hashing has recently received considerable research attention by leveraging the label information to preserve the pairwise similarities of data points in the Hamming space. However, there still remain two crucial bottlenecks: 1) the learning process of the full pairwise similarity preservation is computationally unaffordable and unscalable to deal with big data; 2) the available category information of data are not well-explored to learn discriminative hash functions. To overcome these challenges, we propose a unified Semantic-Aware DIscrete Hashing (SADIH) framework, which aims to directly embed the transformed semantic information into the asymmetric similarity approximation and discriminative hashing function learning. Specifically, a semantic-aware latent embedding is introduced to asymmetrically preserve the full pairwise similarities while skillfully handle the cumbersome n times n pairwise similarity matrix. Meanwhile, a semantic-aware autoencoder is developed to jointly preserve the data structures in the discriminative latent semantic space and perform data reconstruction. Moreover, an efficient alternating optimization algorithm is proposed to solve the resulting discrete optimization problem. Extensive experimental results on multiple large-scale datasets demonstrate that our SADIH can clearly outperform the state-of-the-art baselines with the additional benefit of lower computational costs. …

Collaborative Filtering (CF) google
Collaborative filtering (CF) is a technique used by some recommender systems. Collaborative filtering has two senses, a narrow one and a more general one. In general, collaborative filtering is the process of filtering for information or patterns using techniques involving collaboration among multiple agents, viewpoints, data sources, etc. In the newer, narrower sense, collaborative filtering is a method of making automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating). (also called “people-to-people correlation”) …

If you did not already know

AutoCross google
Feature crossing captures interactions among categorical features and is useful to enhance learning from tabular data in real-world businesses. In this paper, we present AutoCross, an automatic feature crossing tool provided by 4Paradigm to its customers, ranging from banks, hospitals, to Internet corporations. By performing beam search in a tree-structured space, AutoCross enables efficient generation of high-order cross features, which is not yet visited by existing works. Additionally, we propose successive mini-batch gradient descent and multi-granularity discretization to further improve efficiency and effectiveness, while ensuring simplicity so that no machine learning expertise or tedious hyper-parameter tuning is required. Furthermore, the algorithms are designed to reduce the computational, transmitting, and storage costs involved in distributed computing. Experimental results on both benchmark and real-world business datasets demonstrate the effectiveness and efficiency of AutoCross. It is shown that AutoCross can significantly enhance the performance of both linear and deep models. …

Object Mining (OM) google
The goal of our work is to discover dominant objects without using any annotations. We focus on performing unsupervised object discovery and localization in a strictly general setting where only a single image is given. This is far more challenge than typical co-localization or weakly-supervised localization tasks. To tackle this problem, we propose a simple but effective pattern mining-based method, called Object Mining (OM), which exploits the ad-vantages of data mining and feature representation of pre-trained convolutional neural networks (CNNs). Specifically,Object Mining first converts the feature maps from a pre-trained CNN model into a set of transactions, and then frequent patterns are discovered from transaction data base through pattern mining techniques. We observe that those discovered patterns, i.e., co-occurrence highlighted regions,typically hold appearance and spatial consistency. Motivated by this observation, we can easily discover and localize possible objects by merging relevant meaningful pat-terns in an unsupervised manner. Extensive experiments on a variety of benchmarks demonstrate that Object Mining achieves competitive performance compared with the state-of-the-art methods. …

Cross-Modal Data Programming google
Labeling training datasets has become a key barrier to building medical machine learning models. One strategy is to generate training labels programmatically, for example by applying natural language processing pipelines to text reports associated with imaging studies. We propose cross-modal data programming, which generalizes this intuitive strategy in a theoretically-grounded way that enables simpler, clinician-driven input, reduces required labeling time, and improves with additional unlabeled data. In this approach, clinicians generate training labels for models defined over a target modality (e.g. images or time series) by writing rules over an auxiliary modality (e.g. text reports). The resulting technical challenge consists of estimating the accuracies and correlations of these rules; we extend a recent unsupervised generative modeling technique to handle this cross-modal setting in a provably consistent way. Across four applications in radiography, computed tomography, and electroencephalography, and using only several hours of clinician time, our approach matches or exceeds the efficacy of physician-months of hand-labeling with statistical significance, demonstrating a fundamentally faster and more flexible way of building machine learning models in medicine. …

Context-Aware Policy reuSe (CAPS) google
Transfer learning can greatly speed up reinforcement learning for a new task by leveraging policies of relevant tasks. Existing works of policy reuse either focus on only selecting a single best source policy for transfer without considering contexts, or cannot guarantee to learn an optimal policy for a target task. To improve transfer efficiency and guarantee optimality, we develop a novel policy reuse method, called {\em Context-Aware Policy reuSe} (CAPS), that enables multi-policy transfer. Our method learns when and which source policy is best for reuse, as well as when to terminate its reuse. CAPS provides theoretical guarantees in convergence and optimality for both source policy selection and target task learning. Empirical results on a grid-based navigation domain and the Pygame Learning Environment demonstrate that CAPS significantly outperforms other state-of-the-art policy reuse methods. …

If you did not already know

SUpervised Self-organIzing map (SUSI) google
In many research fields, the sizes of the existing datasets vary widely. Hence, there is a need for machine learning techniques which are well-suited for these different datasets. One possible technique is the self-organizing map (SOM), a type of artificial neural network which is, so far, weakly represented in the field of machine learning. The SOM’s unique characteristic is the neighborhood relationship of the output neurons. This relationship improves the ability of generalization on small datasets. SOMs are mostly applied in unsupervised learning and few studies focus on using SOMs as supervised learning approach. Furthermore, no appropriate SOM package is available with respect to machine learning standards and in the widely used programming language Python. In this paper, we introduce the freely available SUpervised Self-organIzing maps (SUSI) Python package which performs supervised regression and classification. The implementation of SUSI is described with respect to the underlying mathematics. Then, we present first evaluations of the SOM for regression and classification datasets from two different domains of geospatial image analysis. Despite the early stage of its development, the SUSI framework performs well and is characterized by only small performance differences between the training and the test datasets. A comparison of the SUSI framework with existing Python and R packages demonstrates the importance of the SUSI framework. In future work, the SUSI framework will be extended, optimized and upgraded e.g. with tools to better understand and visualize the input data as well as the handling of missing and incomplete data. …

Imitative Model google
Imitation learning provides an appealing framework for autonomous control: in many tasks, demonstrations of preferred behavior can be readily obtained from human experts, removing the need for costly and potentially dangerous online data collection in the real world. However, policies learned with imitation learning have limited flexibility to accommodate varied goals at test time. Model-based reinforcement learning (MBRL) offers considerably more flexibility, since a predictive model learned from data can be used to achieve various goals at test time. However, MBRL suffers from two shortcomings. First, the predictive model does not help to choose desired or safe outcomes — it reasons only about what is possible, not what is preferred. Second, MBRL typically requires additional online data collection to ensure that the model is accurate in those situations that are actually encountered when attempting to achieve test time goals. Collecting this data with a partially trained model can be dangerous and time-consuming. In this paper, we aim to combine the benefits of imitation learning and MBRL, and propose imitative models: probabilistic predictive models able to plan expert-like trajectories to achieve arbitrary goals. We find this method substantially outperforms both direct imitation and MBRL in a simulated autonomous driving task, and can be learned efficiently from a fixed set of expert demonstrations without additional online data collection. We also show our model can flexibly incorporate user-supplied costs as test-time, can plan to sequences of goals, and can even perform well with imprecise goals, including goals on the wrong side of the road. …

Hierarchical Critics Assignment (HCA) google
In this paper, we investigate the use of global information to speed up the learning process and increase the cumulative rewards of multi-agent reinforcement learning (MARL) tasks. Within the actor-critic MARL, we introduce multiple cooperative critics from two levels of the hierarchy and propose a hierarchical critic-based multi-agent reinforcement learning algorithm. In our approach, the agent is allowed to receive information from local and global critics in a competition task. The agent not only receives low-level details but also consider coordination from high levels that receiving global information to increase operation skills. Here, we define multiple cooperative critics in the top-bottom hierarchy, called the Hierarchical Critics Assignment (HCA) framework. Our experiment, a two-player tennis competition task in the Unity environment, tested HCA multi-agent framework based on Asynchronous Advantage Actor-Critic (A3C) with Proximal Policy Optimization (PPO) algorithm. The results showed that the HCA- framework outperforms the non-hierarchical critics baseline method for MARL tasks. …

Hessian AWare Quantization (HAWQ) google
Model size and inference speed/power have become a major challenge in the deployment of Neural Networks for many applications. A promising approach to address these problems is quantization. However, uniformly quantizing a model to ultra low precision leads to significant accuracy degradation. A novel solution for this is to use mixed-precision quantization, as some parts of the network may allow lower precision as compared to other layers. However, there is no systematic way to determine the precision of different layers. A brute force approach is not feasible for deep networks, as the search space for mixed-precision is exponential in the number of layers. Another challenge is a similar factorial complexity for determining block-wise fine-tuning order when quantizing the model to a target precision. Here, we introduce Hessian AWare Quantization (HAWQ), a novel second-order quantization method to address these problems. HAWQ allows for the automatic selection of the relative quantization precision of each layer, based on the layer’s Hessian spectrum. Moreover, HAWQ provides a deterministic fine-tuning order for quantizing layers, based on second-order information. We show the results of our method on Cifar-10 using ResNet20, and on ImageNet using Inception-V3, ResNet50 and SqueezeNext models. Comparing HAWQ with state-of-the-art shows that we can achieve similar/better accuracy with $8\times$ activation compression ratio on ResNet20, as compared to DNAS~\cite{wu2018mixed}, and up to $1\%$ higher accuracy with up to $14\%$ smaller models on ResNet50 and Inception-V3, compared to recently proposed methods of RVQuant~\cite{park2018value} and HAQ~\cite{wang2018haq}. Furthermore, we show that we can quantize SqueezeNext to just 1MB model size while achieving above $68\%$ top1 accuracy on ImageNet. …

If you did not already know

xAUC Metric google
Where machine-learned predictive risk scores inform high-stakes decisions, such as bail and sentencing in criminal justice, fairness has been a serious concern. Recent work has characterized the disparate impact that such risk scores can have when used for a binary classification task and provided tools to audit and adjust resulting classifiers. This may not account, however, for the more diverse downstream uses of risk scores and their non-binary nature. To better account for this, in this paper, we investigate the fairness of predictive risk scores from the point of view of a bipartite ranking task, where one seeks to rank positive examples higher than negative ones. We introduce the xAUC disparity as a metric to assess the disparate impact of risk scores and define it as the difference in the probabilities of ranking a random positive example from one protected group above a negative one from another group and vice versa. We provide a decomposition of bipartite ranking loss into components that involve the discrepancy and components that involve pure predictive ability within each group. We further provide an interpretation of the xAUC discrepancy in terms of resource allocation fairness and make connections to existing fairness metrics and adjustments. We assess xAUC empirically on datasets in recidivism prediction, income prediction, and cardiac arrest prediction, where it describes disparities that are not evident from simply comparing within-group predictive performance. …

Multi-Objective Neural Architecture Search (MONAS) google
Recent studies on neural architecture search have shown that automatically designed neural networks perform as good as human-designed architectures. While most existing works on neural architecture search aim at finding architectures that optimize for prediction accuracy. These methods may generate complex architectures consuming excessively high energy consumption, which is not suitable for computing environment with limited power budgets. We propose MONAS, a Multi-Objective Neural Architecture Search with novel reward functions that consider both prediction accuracy and power consumption when exploring neural architectures. MONAS effectively explores the design space and searches for architectures satisfying the given requirements. The experimental results demonstrate that the architectures found by MONAS achieve accuracy comparable to or better than the state-of-the-art models, while having better energy efficiency. …

Wasserstein Barycenter google
Wasserstein barycenter is a single distribution that summarizes a collection of input measures while respecting their geometry. …

Wasserstein Variational Inference google
This paper introduces Wasserstein variational inference, a new form of approximate Bayesian inference based on optimal transport theory. Wasserstein variational inference uses a new family of divergences that includes both f-divergences and the Wasserstein distance as special cases. The gradients of the Wasserstein variational loss are obtained by backpropagating through the Sinkhorn iterations. This technique results in a very stable likelihood-free training method that can be used with implicit distributions and probabilistic programs. Using the Wasserstein variational inference framework, we introduce several new forms of autoencoders and test their robustness and performance against existing variational autoencoding techniques. …

If you did not already know

Outlier Aware Network Embedding Algorithm (ONE) google
Attributed network embedding has received much interest from the research community as most of the networks come with some content in each node, which is also known as node attributes. Existing attributed network approaches work well when the network is consistent in structure and attributes, and nodes behave as expected. But real world networks often have anomalous nodes. Typically these outliers, being relatively unexplainable, affect the embeddings of other nodes in the network. Thus all the downstream network mining tasks fail miserably in the presence of such outliers. Hence an integrated approach to detect anomalies and reduce their overall effect on the network embedding is required. Towards this end, we propose an unsupervised outlier aware network embedding algorithm (ONE) for attributed networks, which minimizes the effect of the outlier nodes, and hence generates robust network embeddings. We align and jointly optimize the loss functions coming from structure and attributes of the network. To the best of our knowledge, this is the first generic network embedding approach which incorporates the effect of outliers for an attributed network without any supervision. We experimented on publicly available real networks and manually planted different types of outliers to check the performance of the proposed algorithm. Results demonstrate the superiority of our approach to detect the network outliers compared to the state-of-the-art approaches. We also consider different downstream machine learning applications on networks to show the efficiency of ONE as a generic network embedding technique. The source code is made available at https://…/ONE.

Flexible Attributed Network Embedding (FANE) google
Network embedding aims to find a way to encode network by learning an embedding vector for each node in the network. The network often has property information which is highly informative with respect to the node’s position and role in the network. Most network embedding methods fail to utilize this information during network representation learning. In this paper, we propose a novel framework, FANE, to integrate structure and property information in the network embedding process. In FANE, we design a network to unify heterogeneity of the two information sources, and define a new random walking strategy to leverage property information and make the two information compensate. FANE is conceptually simple and empirically powerful. It improves over the state-of-the-art methods on Cora dataset classification task by over 5%, more than 10% on WebKB dataset classification task. Experiments also show that the results improve more than the state-of-the-art methods as increasing training size. Moreover, qualitative visualization show that our framework is helpful in network property information exploration. In all, we present a new way for efficiently learning state-of-the-art task-independent representations in complex attributed networks. The source code and datasets of this paper can be obtained from https://…/FANE.

Cross-Domain Labeled LDA (CDL-LDA) google
Cross-domain text classification aims at building a classifier for a target domain which leverages data from both source and target domain. One promising idea is to minimize the feature distribution differences of the two domains. Most existing studies explicitly minimize such differences by an exact alignment mechanism (aligning features by one-to-one feature alignment, projection matrix etc.). Such exact alignment, however, will restrict models’ learning ability and will further impair models’ performance on classification tasks when the semantic distributions of different domains are very different. To address this problem, we propose a novel group alignment which aligns the semantics at group level. In addition, to help the model learn better semantic groups and semantics within these groups, we also propose a partial supervision for model’s learning in source domain. To this end, we embed the group alignment and a partial supervision into a cross-domain topic model, and propose a Cross-Domain Labeled LDA (CDL-LDA). On the standard 20Newsgroup and Reuters dataset, extensive quantitative (classification, perplexity etc.) and qualitative (topic detection) experiments are conducted to show the effectiveness of the proposed group alignment and partial supervision. …

Generator and Responsibility Predictor (GRP) google
Learning from complex demonstrations is challenging, especially when the demonstration consists of different strategies. A popular approach is to use a deep neural network to perform imitation learning. However, the structure of that deep neural network has to be “deep’ enough to capture all possible scenarios. Besides the machine learning issue, how humans learn in the sense of physiology has rarely been addressed and relevant works on spinal cord learning are rarer. In this work, we develop a novel modular learning architecture, the Generator and Responsibility Predictor (GRP) model, which automatically learns the sub-task policies from an unsegmented controller demonstration and learns to switch between the policies. We also introduce a more physiological based neural network architecture. We implemented our GRP model and our proposed neural network to form a model the transfers the swing leg control from the brain to the spinal cord. Our result suggests that by using the GRP model the brain can successfully transfer the target swing leg control to the spinal cord and the resulting model can switch between sub-control policies automatically. …

If you did not already know

Discourse Analysis (DA) google
Discourse analysis (DA), or discourse studies, is a general term for a number of approaches to analyzing written, vocal, or sign language use or any significant semiotic event. The objects of discourse analysis – discourse, writing, conversation, communicative event – are variously defined in terms of coherent sequences of sentences, propositions, speech, or turns-at-talk. Contrary to much of traditional linguistics, discourse analysts not only study language use ‘beyond the sentence boundary’, but also prefer to analyze ‘naturally occurring’ language use, and not invented examples. Text linguistics is related. The essential difference between discourse analysis and text linguistics is that it aims at revealing socio-psychological characteristics of a person/persons rather than text structure. Discourse analysis has been taken up in a variety of social science disciplines, including linguistics, education, sociology, anthropology, social work, cognitive psychology, social psychology, area studies, cultural studies, international relations, human geography, communication studies, and translation studies, each of which is subject to its own assumptions, dimensions of analysis, and methodologies. …

Isolation Forest google
Most existing model-based approaches to anomaly detection construct a profile of normal instances, then identify instances that do not conform to the normal profile as anomalies. This paper proposes a fundamentally different model-based method that explicitly isolates anomalies instead of profiles normal points. To our best knowledge, the concept of isolation has not been explored in current literature. The use of isolation enables the proposed method, iForest, to exploit sub-sampling to an extent that is not feasible in existing methods, creating an algorithm which has a linear time complexity with a low constant and a low memory requirement. Our empirical evaluation shows that iForest performs favourably to ORCA, a near-linear time complexity distance-based method, LOF and Random Forests in terms of AUC and processing time, and especially in large data sets. iForest also works well in high dimensional problems which have a large number of irrelevant attributes, and in situations where training set does not contain any anomalies.
“Extended Isolation Forest”


Generated-Artificial-Noise to Generated-Artificial-Noise (GAN2GAN) google
We tackle a challenging blind image denoising problem, in which only single noisy images are available for training a denoiser and no information about noise is known, except for it being zero-mean, additive, and independent of the clean image. In such a setting, which often occurs in practice, it is not possible to train a denoiser with the standard discriminative training or with the recently developed Noise2Noise (N2N) training; the former requires the underlying clean image for the given noisy image, and the latter requires two independently realized noisy image pair for a clean image. To that end, we propose GAN2GAN (Generated-Artificial-Noise to Generated-Artificial-Noise) method that can first learn to generate synthetic noisy image pairs that simulate independent realizations of the noise in the given images, then carry out the N2N training of a denoiser with those synthetically generated noisy image pairs. Our method consists of three parts: extracting smooth noisy patches to learn the noise distribution in the given images, training a generative model to synthesize the noisy image pairs, and devising an iterative N2N training of a denoiser. In results, we show the denoiser trained with our GAN2GAN, solely based on single noisy images, achieves an impressive denoising performance, almost approaching the performance of the standard discriminatively-trained or N2N-trained models that have more information than ours, and significantly outperforming the recent baselines for the same setting. …

k-Same-Siamese-GAN (kSS-GAN) google
In recent years, advances in camera and computing hardware have made it easy to capture and store amounts of image and video data. Consider a data holder, such as a hospital or a government entity, who has a privately held collection of personal data. Then, how can we ensure that the data holder does conceal the identity of each individual in the imagery of personal data while still preserving certain useful aspects of the data after de-identification? In this work, we proposed a novel approach towards high-resolution facial image de-identification, called k-Same-Siamese-GAN (kSS-GAN), which leverages k-Same-Anonymity mechanism, Generative Adversarial Network (GAN), and hyperparameter tuning. To speed up training and reduce memory consumption, the mixed precision training (MPT) technique is also applied to make kSS-GAN provide guarantees regarding privacy protection on close-form identities and be trained much more efficiently as well. Finally, we dedicated our system to an actual dataset: RafD dataset for performance testing. Besides protecting privacy of high resolution of facial images, the proposed system is also justified for its ability in automating parameter tuning and breaking through the limitation of the number of adjustable parameters. …

If you did not already know

TextCohesion google
In this paper, we propose a pixel-wise detector named TextCohesion for scene text detection especially for those with arbitrary shapes. TextChohesion splits a text instance into 5 key components: a Text Skeleton, and four Directional pixel Regions. These components are easy to handle rather than directly control the entire text instance. We also introduce a confidence scoring mechanism to filter out the characters that are similar to texts. Our method can integrate text contexts intensively even grasp clues when it is very complex background. Experiments on challenging benchmarks demonstrate that our TextCohesion clearly outperform state-of-the-art methods and it achieves an F-measure of 84.6 and 86.3 on Total-Text and SCUT-CTW1500 respectively. …

Adversarial Contrastive Estimation google
Learning by contrasting positive and negative samples is a general strategy adopted by many methods. Noise contrastive estimation (NCE) for word embeddings and translating embeddings for knowledge graphs are examples in NLP employing this approach. In this work, we view contrastive learning as an abstraction of all such methods and augment the negative sampler into a mixture distribution containing an adversarially learned sampler. The resulting adaptive sampler finds harder negative examples, which forces the main model to learn a better representation of the data. We evaluate our proposal on learning word embeddings, order embeddings and knowledge graph embeddings and observe both faster convergence and improved results on multiple metrics. …

Learning Curve google
Plots relating performance to experience are widely used in machine learning. Performance is the error rate or accuracy of the learning system, while experience may be the number of training examples used for learning or the number of iterations used in optimizing the system model parameters. The machine learning curve is useful for many purposes including comparing different algorithms, choosing model parameters during design, adjusting optimization to improve convergence, and determining the amount of data used for training. …

Privacy-Preserving-Summation-Consistent (PPSC) google
A distributed computing protocol consists of three components: (i) Data Localization: a network-wide dataset is decomposed into local datasets separately preserved at a network of nodes; (ii) Node Communication: the nodes hold individual dynamical states and communicate with the neighbors about these dynamical states; (iii) Local Computation: state recursions are computed at each individual node. Information about the local datasets enters the computation process through the node-to-node communication and the local computations, which may be leaked to dynamics eavesdroppers having access to global or local node states. In this paper, we systematically investigate this potential computational privacy risks in distributed computing protocols in the form of structured system identification, and then propose and thoroughly analyze a Privacy-Preserving-Summation-Consistent (PPSC) mechanism as a generic privacy encryption subroutine for consensus-based distributed computations. The central idea is that the consensus manifold is where we can both hide node privacy and achieve computational accuracy. In this first part of the paper, we demonstrate the computational privacy risks in distributed algorithms against dynamics eavesdroppers and particularly in distributed linear equation solvers, and then propose the PPSC mechanism and illustrate its usefulness. …