If you did not already know

TensorWatch google
TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Microsoft Research. It works in Jupyter Notebook to show real-time visualizations of your machine learning training and perform several other key analysis tasks for your models and data. TensorWatch is designed to be flexible and extensible so you can also build your own custom visualizations, UIs, and dashboards. Besides traditional ‘what-you-see-is-what-you-log’ approach, it also has a unique capability to execute arbitrary queries against your live ML training process, return a stream as a result of the query and view this stream using your choice of a visualizer (we call this Lazy Logging Mode).
Introducing TensorWatch: Microsoft Research New Tool for Debugging Deep Learning Programs


SelectiveNet google
We consider the problem of selective prediction (also known as reject option) in deep neural networks, and introduce SelectiveNet, a deep neural architecture with an integrated reject option. Existing rejection mechanisms are based mostly on a threshold over the prediction confidence of a pre-trained network. In contrast, SelectiveNet is trained to optimize both classification (or regression) and rejection simultaneously, end-to-end. The result is a deep neural network that is optimized over the covered domain. In our experiments, we show a consistently improved risk-coverage trade-off over several well-known classification and regression datasets, thus reaching new state-of-the-art results for deep selective classification. …

Structured Uncertainty Prediction Network google
This paper is the first work to propose a network to predict a structured uncertainty distribution for a reconstructed image. Our novel model learns to predict a full Gaussian covariance matrix for each reconstruction, which permits efficient sampling and likelihood evaluation. We demonstrate that our model can accurately reconstruct ground truth correlated residual distributions for synthetic datasets and generate plausible high frequency samples for real face images. We also illustrate the use of these predicted covariances for structure preserving image denoising. …

Cronbach’s Alpha google
In statistics (classical test theory), Cronbach’s alpha is the trivial name used for tau-equivalent reliability \rho_T as a (lowerbound) estimate of the reliability of a psychometric test. Synonymous terms are: coefficient alpha, Guttman’s \lambda _{3}, Hoyt method and KR-20. Cronbach’s alpha reliability coefficient is one of the most widely used indicators of the scale reliability. It is used often without concern for the data (this will be a different text) because it is simple to calculate and it requires only one implementation of a single scale. The aim of this article is to provide some more insight into the functioning of this reliability coefficient without going into heavy mathematics. …

If you did not already know

Data Shapley google
As data becomes the fuel driving technological and economic growth, a fundamental challenge is how to quantify the value of data in algorithmic predictions and decisions. For example, in healthcare and consumer markets, it has been suggested that individuals should be compensated for the data that they generate, but it is not clear what is an equitable valuation for individual data. In this work, we develop a principled framework to address data valuation in the context of supervised machine learning. Given a learning algorithm trained on $n$ data points to produce a predictor, we propose data Shapley as a metric to quantify the value of each training datum to the predictor performance. Data Shapley uniquely satisfies several natural properties of equitable data valuation. We develop Monte Carlo and gradient-based methods to efficiently estimate data Shapley values in practical settings where complex learning algorithms, including neural networks, are trained on large datasets. In addition to being equitable, extensive experiments across biomedical, image and synthetic data demonstrate that data Shapley has several other benefits: 1) it is more powerful than the popular leave-one-out or leverage score in providing insight on what data is more valuable for a given learning task; 2) low Shapley value data effectively capture outliers and corruptions; 3) high Shapley value data inform what type of new data to acquire to improve the predictor. …

Register Match Automata (RMA) google
We propose an automaton model which is a combination of symbolic and register automata, i.e., we enrich symbolic automata with memory. We call such automata Register Match Automata (RMA). RMA extend the expressive power of symbolic automata, by allowing Boolean formulas to be applied not only to the last element read from the input string, but to multiple elements, stored in their registers. RMA also extend register automata, by allowing arbitrary Boolean formulas, besides equality predicates. We study the closure properties of RMA under union, concatenation, Kleene closure, complement and determinization and show that RMA, contrary to symbolic automata, are not in general closed under determinization, but they are when a window operator, quintessential in Complex Event Processing, is used. We present detailed algorithms for constructing deterministic RMA from regular expressions extended with Boolean constraints, when windowing is used. We show how RMA can be used in Complex Event Processing in order to detect patterns upon streams of events, using a framework that provides denotational and compositional semantics, and that allows for a systematic treatment of such automata. …

Parallax google
Embeddings are a fundamental component of many modern machine learning and natural language processing models. Understanding them and visualizing them is essential for gathering insights about the information they capture and the behavior of the models. State of the art in analyzing embeddings consists in projecting them in two-dimensional planes without any interpretable semantics associated to the axes of the projection, which makes detailed analyses and comparison among multiple sets of embeddings challenging. In this work, we propose to use explicit axes defined as algebraic formulae over embeddings to project them into a lower dimensional, but semantically meaningful subspace, as a simple yet effective analysis and visualization methodology. This methodology assigns an interpretable semantics to the measures of variability and the axes of visualizations, allowing for both comparisons among different sets of embeddings and fine-grained inspection of the embedding spaces. We demonstrate the power of the proposed methodology through a series of case studies that make use of visualizations constructed around the underlying methodology and through a user study. The results show how the methodology is effective at providing more profound insights than classical projection methods and how it is widely applicable to many other use cases. …

Deep Euclidean Feature Representations through Adaptation on the Grassmann Manifold (DEFRAG) google
We propose a novel technique for training deep networks with the objective of obtaining feature representations that exist in a Euclidean space and exhibit strong clustering behavior. Our desired features representations have three traits: they can be compared using a standard Euclidian distance metric, samples from the same class are tightly clustered, and samples from different classes are well separated. However, most deep networks do not enforce such feature representations. The DEFRAG training technique consists of two steps: first good feature clustering behavior is encouraged though an auxiliary loss function based on the Silhouette clustering metric. Then the feature space is retracted onto a Grassmann manifold to ensure that the L_2 Norm forms a similarity metric. The DEFRAG technique achieves state of the art results on standard classification datasets using a relatively small network architecture with significantly fewer parameters than many standard networks. …

If you did not already know

Resampling Uncertainty Estimation (RUE) google
To use machine learning in high stakes applications (e.g. medicine), we need tools for building confidence in the system and evaluating whether it is reliable. Methods to improve model reliability are often applied at train time (e.g. using Bayesian inference to obtain uncertainty estimates). An alternative is to audit a fixed model subsequent to training. In this paper, we describe resampling uncertainty estimation (RUE), an algorithm to audit the pointwise reliability of predictions. Intuitively, RUE estimates the amount that a single prediction would change if the model had been fit on different training data drawn from the same distribution by using the gradient and Hessian of the model’s loss on training data. Experimentally, we show that RUE more effectively detects inaccurate predictions than existing tools for auditing reliability subsequent to training. We also show that RUE can create predictive distributions that are competitive with state-of-the-art methods like Monte Carlo dropout, probabilistic backpropagation, and deep ensembles, but does not depend on specific algorithms at train-time like these methods do. …

Hawkes Process google
Hawkes processes are a particularly interesting class of stochastic process that have been applied in diverse areas, from earthquake modelling to financial analysis. They are point processes whose defining characteristic is that they ‘self-excite’, meaning that each arrival increases the rate of future arrivals for some period of time. Hawkes processes are well established, particularly within the financial literature, yet many of the treatments are inaccessible to one not acquainted with the topic. This survey provides background, introduces the field and historical developments, and touches upon all major aspects of Hawkes processes.
Hawkes Processes


Positive Unlabeled Learning (PU Learning) google
PU learning, in which a binary classifier is learned in a semi-supervised way from only positive and unlabeled sample points. In PU learning, two sets of examples are assumed to be available for training: the positive set P {\displaystyle P} P and a mixed set U {\displaystyle U} U, which is assumed to contain both positive and negative samples, but without these being labeled as such. This contrasts with other forms of semisupervised learning, where it is assumed that a labeled set containing examples of both classes is available in addition to unlabeled samples. A variety of techniques exist to adapt supervised classifiers to the PU learning setting, including variants of the EM algorithm. PU learning has been successfully applied to text, time series, and bioinformatics tasks.

Learning from positive and unlabeled data or PU learning is the setting where a learner only has access to positive examples and unlabeled data. The assumption is that the unlabeled data can contain both positive and negative examples. This setting has attracted increasing interest within the machine learning literature as this type of data naturally arises in applications such as medical diagnosis and knowledge base completion.
Learning From Positive and Unlabeled Data: A Survey
PU Learning – Positive/unknown class machine learning approaches

Inductive Matrix Completion (IMC) google
Recommender systems (RS), which have been an essential part in a wide range of applications, can be formulated as a matrix completion (MC) problem. To boost the performance of MC, matrix completion with side information, called inductive matrix completion (IMC), was further proposed. In real applications, the factorized version of IMC is more favored due to its efficiency of optimization and implementation. Regarding the factorized version, traditional IMC method can be interpreted as learning an individual representation for each feature, which is independent from each other. Moreover, representations for the same features are shared across all users/items. However, the independent characteristic for features and shared characteristic for the same features across all users/items may limit the expressiveness of the model. The limitation also exists in variants of IMC, such as deep learning based IMC models. To break the limitation, we generalize recent advances of self-attention mechanism to IMC and propose a context-aware model called collaborative self-attention (CSA), which can jointly learn context-aware representations for features and perform inductive matrix completion process. Extensive experiments on three large-scale datasets from real RS applications demonstrate effectiveness of CSA. …

If you did not already know

Feasible Graphical Lasso (FGLasso) google
In this paper, we investigate seemingly unrelated regression (SUR) models that allow the number of equations (N) to be large, and to be comparable to the number of the observations in each equation (T). It is well known in the literature that the conventional SUR estimator, for example, the generalized least squares (GLS) estimator of Zellner (1962) does not perform well. As the main contribution of the paper, we propose a new feasible GLS estimator called the feasible graphical lasso (FGLasso) estimator. For a feasible implementation of the GLS estimator, we use the graphical lasso estimation of the precision matrix (the inverse of the covariance matrix of the equation system errors) assuming that the underlying unknown precision matrix is sparse. We derive asymptotic theories of the new estimator and investigate its finite sample properties via Monte-Carlo simulations. …

Multi-Motivation Behavior Modeling (MMBM) google
In recent years, reinforcement learning (RL) methods have been applied to model gameplay with great success, achieving super-human performance in various environments, such as Atari, Go, and Poker. However, those studies mostly focus on winning the game and have largely ignored the rich and complex human motivations, which are essential for understanding different players’ diverse behaviors. In this paper, we present a novel method called Multi-Motivation Behavior Modeling (MMBM) that takes the multifaceted human motivations into consideration and models the underlying value structure of the players using inverse RL. Our approach does not require the access to the dynamic of the system, making it feasible to model complex interactive environments such as massively multiplayer online games. MMBM is tested on the World of Warcraft Avatar History dataset, which recorded over 70,000 users’ gameplay spanning three years period. Our model reveals the significant difference of value structures among different player groups. Using the results of motivation modeling, we also predict and explain their diverse gameplay behaviors and provide a quantitative assessment of how the redesign of the game environment impacts players’ behaviors. …

Convolutional Deep Averaging Network (CDAN) google
Unordered feature sets are a nonstandard data structure that traditional neural networks are incapable of addressing in a principled manner. Providing a concatenation of features in an arbitrary order may lead to the learning of spurious patterns or biases that do not actually exist. Another complication is introduced if the number of features varies between each set. We propose convolutional deep averaging networks (CDANs) for classifying and learning representations of datasets whose instances comprise variable-size, unordered feature sets. CDANs are efficient, permutation-invariant, and capable of accepting sets of arbitrary size. We emphasize the importance of nonlinear feature embeddings for obtaining effective CDAN classifiers and illustrate their advantages in experiments versus linear embeddings and alternative permutation-invariant and -equivariant architectures. …

Interactive Similarity Projection (iSP) google
Recent advances in machine learning allow us to analyze and describe the content of high-dimensional data like text, audio, images or other signals. In order to visualize that data in 2D or 3D, usually Dimensionality Reduction (DR) techniques are employed. Most of these techniques, e.g., PCA or t-SNE, produce static projections without taking into account corrections from humans or other data exploration scenarios. In this work, we propose the interactive Similarity Projection (iSP), a novel interactive DR framework based on similarity embeddings, where we form a differentiable objective based on the user interactions and perform learning using gradient descent, with an end-to-end trainable architecture. Two interaction scenarios are evaluated. First, a common methodology in multidimensional projection is to project a subset of data, arrange them in classes or clusters, and project the rest unseen dataset based on that manipulation, in a kind of semi-supervised interpolation. We report results that outperform competitive baselines in a wide range of metrics and datasets. Second, we explore the scenario of manipulating some classes, while enriching the optimization with high-dimensional neighbor information. Apart from improving classification precision and clustering on images and text documents, the new emerging structure of the projection unveils semantic manifolds. For example, on the Head Pose dataset, by just dragging the faces looking far left to the left and those looking far right to the right, all faces are re-arranged on a continuum even on the vertical axis (face up and down). This end-to-end framework can be used for fast, visual semi-supervised learning, manifold exploration, interactive domain adaptation of neural embeddings and transfer learning. …

If you did not already know

Graph Learning google
The construction of a meaningful graph topology plays a crucial role in the effective representation, processing, analysis and visualization of structured data. When a natural choice of the graph is not readily available from the datasets, it is thus desirable to infer or learn a graph topology from the data. In this tutorial overview, we survey solutions to the problem of graph learning, including classical viewpoints from statistics and physics, and more recent approaches that adopt a graph signal processing (GSP) perspective. We further emphasize the conceptual similarities and differences between classical and GSP graph inference methods and highlight the potential advantage of the latter in a number of theoretical and practical scenarios. We conclude with several open issues and challenges that are keys to the design of future signal processing and machine learning algorithms for learning graphs from data. …

Graph Kernel Library (GraKeL) google
The problem of accurately measuring the similarity between graphs is at the core of many applications in a variety of disciplines. Graph kernels have recently emerged as a promising approach to this problem. There are now many kernels, each focusing on different structural aspects of graphs. Here, we present GraKeL, a library that unifies several graph kernels into a common framework. The library is written in Python and is build on top of scikit-learn. It is simple to use and can be naturally combined with scikit-learn’s modules to build a complete machine learning pipeline for tasks such as graph classification and clustering. The code is BSD licensed and is available at: https://…/GraKeL.

Deep500 google
We introduce Deep500: the first customizable benchmarking infrastructure that enables fair comparison of the plethora of deep learning frameworks, algorithms, libraries, and techniques. The key idea behind Deep500 is its modular design, where deep learning is factorized into four distinct levels: operators, network processing, training, and distributed training. Our evaluation illustrates that Deep500 is customizable (enables combining and benchmarking different deep learning codes) and fair (uses carefully selected metrics). Moreover, Deep500 is fast (incurs negligible overheads), verifiable (offers infrastructure to analyze correctness), and reproducible. Finally, as the first distributed and reproducible benchmarking system for deep learning, Deep500 provides software infrastructure to utilize the most powerful supercomputers for extreme-scale workloads. …

Knative google
Knative is a new open source project started by engineers from Google, Pivotal, and other industry leaders. It’s a collection of components that extend Kubernetes. It includes three major parts: Serving, Build, and Eventing.
How to use Knative to deploy a Serverless Application on Kubernetes

If you did not already know

ATTACK2VEC google
Despite the fact that cyberattacks are constantly growing in complexity, the research community still lacks effective tools to easily monitor and understand them. In particular, there is a need for techniques that are able to not only track how prominently certain malicious actions, such as the exploitation of specific vulnerabilities, are exploited in the wild, but also (and more importantly) how these malicious actions factor in as attack steps in more complex cyberattacks. In this paper we present ATTACK2VEC, a system that uses temporal word embeddings to model how attack steps are exploited in the wild, and track how they evolve. We test ATTACK2VEC on a dataset of billions of security events collected from the customers of a commercial Intrusion Prevention System over a period of two years, and show that our approach is effective in monitoring the emergence of new attack strategies in the wild and in flagging which attack steps are often used together by attackers (e.g., vulnerabilities that are frequently exploited together). ATTACK2VEC provides a useful tool for researchers and practitioners to better understand cyberattacks and their evolution, and use this knowledge to improve situational awareness and develop proactive defenses. …

Tweepy google
An easy-to-use Python library for accessing the Twitter API. …

Deep Grid Net (DGN) google
Grid maps obtained from fused sensory information are nowadays among the most popular approaches for motion planning for autonomous driving cars. In this paper, we introduce Deep Grid Net (DGN), a deep learning (DL) system designed for understanding the context in which an autonomous car is driving. DGN incorporates a learned driving environment representation based on Occupancy Grids (OG) obtained from raw Lidar data and constructed on top of the Dempster-Shafer (DS) theory. The predicted driving context is further used for switching between different driving strategies implemented within EB robinos, Elektrobit’s Autonomous Driving (AD) software platform. Based on genetic algorithms (GAs), we also propose a neuroevolutionary approach for learning the tuning hyperparameters of DGN. The performance of the proposed deep network has been evaluated against similar competing driving context estimation classifiers. …

Distributed Heavy-Ball google
We study distributed optimization to minimize a global objective that is a sum of smooth and strongly-convex local cost functions. Recently, several algorithms over undirected and directed graphs have been proposed that use a gradient tracking method to achieve linear convergence to the global minimizer. However, a connection between these different approaches has been unclear. In this paper, we first show that many of the existing first-order algorithms are in fact related with a simple state transformation, at the heart of which lies the~$\mc{AB}$ algorithm. We then describe \textit{distributed heavy-ball}, denoted as~$\mc{AB}m$, i.e.,~$\mc{AB}$ with momentum, that combines gradient tracking with a momentum term and uses nonidentical local step-sizes. By~simultaneously implementing both row- and column-stochastic weights,~$\mc{AB}m$ removes the conservatism in the related work due to doubly-stochastic weights or eigenvector estimation.~$\mc{AB}m$ thus naturally leads to optimization and average-consensus over both undirected and directed graphs, casting a unifying framework over several well-known consensus algorithms over arbitrary graphs. We show that~$\mathcal{AB}m$ has a global $R$-linear convergence when the largest step-size is positive and sufficiently small. Following the standard practice in the heavy-ball literature, we numerically show that~$\mc{AB}m$ achieves accelerated convergence especially when the objective function is ill-conditioned. …

If you did not already know

Hierarchical Representation Learning on Heterogeneous Graph (HRLHG) google
While the volume of scholarly publications has increased at a frenetic pace, accessing and consuming the useful candidate papers, in very large digital libraries, is becoming an essential and challenging task for scholars. Unfortunately, because of language barrier, some scientists (especially the junior ones or graduate students who do not master other languages) cannot efficiently locate the publications hosted in a foreign language repository. In this study, we propose a novel solution, cross-language citation recommendation via Hierarchical Representation Learning on Heterogeneous Graph (HRLHG), to address this new problem. HRLHG can learn a representation function by mapping the publications, from multilingual repositories, to a low-dimensional joint embedding space from various kinds of vertexes and relations on a heterogeneous graph. By leveraging both global (task specific) plus local (task independent) information as well as a novel supervised hierarchical random walk algorithm, the proposed method can optimize the publication representations by maximizing the likelihood of locating the important cross-language neighborhoods on the graph. Experiment results show that the proposed method can not only outperform state-of-the-art baseline models, but also improve the interpretability of the representation model for cross-language citation recommendation task. …

Global Sensitivity Analysis (GSA) google
This presentation aims to introduce global sensitivity analysis (SA), targeting an audience unfamiliar with the topic, and to give practical hints about the associated advantages and the effort needed. To this effect, we shall review some techniques for sensitivity analysis, including those that are not global, by applying them to a simple example. This will give the audience a chance to contrast each method’s result against the audience’s own expectation of what the sensitivity pattern for the simple model should be. We shall also try to relate the discourse on the relative importance of model input factors to specific questions, such as ‘Which of the uncertain input factor(s) is so non-influential that we can safely fix it/them?’ or ‘If we could eliminate the uncertainty in one of the input factors, which factor should we choose to reduce the most the variance of the output?’ In this way, the selection of the method for sensitivity analysis will be put in relation to the framing of the analysis and to the interpretation and presentation of the results. The choice of the output of interest will be discussed in relation to the purpose of the model based analysis. The main methods that we present in this lecture are all related with one another, and are the method of Morris for factors’ screening and the variance-based measures. All are model-free, in the sense that their application does not rely on special assumptions on the behaviour of the model (such as linearity, monotonicity and additivity of the relationship between input factor and model output). Monte Carlo filtering will be also be discussed to demonstrate the usefulness of global sensitivity analysis in relation to estimation.
Global sensitivity analysis: An introduction (PDF Download Available)
Global sensitivity analysis for statistical model parameters


Navigator-Teacher-Scrutinizer Network (NTS-Net) google
Fine-grained classification is challenging due to the difficulty of finding discriminative features. Finding those subtle traits that fully characterize the object is not straightforward. To handle this circumstance, we propose a novel self-supervision mechanism to effectively localize informative regions without the need of bounding-box/part annotations. Our model, termed NTS-Net for Navigator-Teacher-Scrutinizer Network, consists of a Navigator agent, a Teacher agent and a Scrutinizer agent. In consideration of intrinsic consistency between informativeness of the regions and their probability being ground-truth class, we design a novel training paradigm, which enables Navigator to detect most informative regions under the guidance from Teacher. After that, the Scrutinizer scrutinizes the proposed regions from Navigator and makes predictions. Our model can be viewed as a multi-agent cooperation, wherein agents benefit from each other, and make progress together. NTS-Net can be trained end-to-end, while provides accurate fine-grained classification predictions as well as highly informative regions during inference. We achieve state-of-the-art performance in extensive benchmark datasets. …

Algojammer google
Algojammer is an experimental, proof-of-concept code editor for writing algorithms in Python. It was mainly written to assist with solving the kind of algorithm problems that feature in competitions like Google Code Jam, Topcoder and HackerRank. …

If you did not already know

Spiking Neural Network (SNN) google
Spiking Neural Networks (SNNs) are distributed systems whose computing elements, or neurons, are characterized by analog internal dynamics and by digital and sparse inter-neuron, or synaptic, communications. The sparsity of the synaptic spiking inputs and the corresponding event-driven nature of neural processing can be leveraged by hardware implementations to obtain significant energy reductions as compared to conventional Artificial Neural Networks (ANNs). SNNs can be used not only as coprocessors to carry out given computing tasks, such as classification, but also as learning machines that adapt their internal parameters, e.g., their synaptic weights, on the basis of data and of a learning criterion. This paper provides an overview of models, learning rules, and applications of SNNs from the viewpoint of stochastic signal processing. …

REalistic Single Image DEhazing (RESIDE) google
In this paper, we present a comprehensive study and evaluation of existing single image dehazing algorithms, using a new large-scale benchmark consisting of both synthetic and real-world hazy images, called REalistic Single Image DEhazing (RESIDE). RESIDE highlights diverse data sources and image contents, and is divided into five subsets, each serving different training or evaluation purposes. We further provide a rich variety of criteria for dehazing algorithm evaluation, ranging from full-reference metrics, to no-reference metrics, to subjective evaluation and the novel task-driven evaluation. Experiments on RESIDE sheds light on the comparisons and limitations of state-of-the-art dehazing algorithms, and suggest promising future directions. (PDF) RESIDE: A Benchmark for Single Image Dehazing. Available from: https://…IDE_A_Benchmark_for_Single_Image_Dehazing [accessed Jul 03 2018]. …

DeFactoNLP google
In this paper, we describe DeFactoNLP, the system we designed for the FEVER 2018 Shared Task. The aim of this task was to conceive a system that can not only automatically assess the veracity of a claim but also retrieve evidence supporting this assessment from Wikipedia. In our approach, the Wikipedia documents whose Term Frequency-Inverse Document Frequency (TFIDF) vectors are most similar to the vector of the claim and those documents whose names are similar to those of the named entities (NEs) mentioned in the claim are identified as the documents which might contain evidence. The sentences in these documents are then supplied to a textual entailment recognition module. This module calculates the probability of each sentence supporting the claim, contradicting the claim or not providing any relevant information to assess the veracity of the claim. Various features computed using these probabilities are finally used by a Random Forest classifier to determine the overall truthfulness of the claim. The sentences which support this classification are returned as evidence. Our approach achieved a 0.4277 evidence F1-score, a 0.5136 label accuracy and a 0.3833 FEVER score. …

Wikistat 2.0 google
Big data, data science, deep learning, artificial intelligence are the key words of intense hype related with a job market in full evolution, that impose to adapt the contents of our university professional trainings. Which artificial intelligence is mostly concerned by the job offers? Which methodologies and technologies should be favored in the training pprograms? Which objectives, tools and educational resources do we needed to put in place to meet these pressing needs? We answer these questions in describing the contents and operational ressources in the Data Science orientation of the speciality Applied Mathematics at INSA Toulouse. We focus on basic mathematics training (Optimization, Probability, Statistics), associated with the practical implementation of the most performing statistical learning algorithms, with the most appropriate technologies and on real examples. Considering the huge volatility of the technologies, it is imperative to train students in seft-training, this will be their technological watch tool when they will be in professional activity. This explains the structuring of the educational site https://…/wikistat into a set of tutorials. Finally, to motivate the thorough practice of these tutorials, a serious game is organized each year in the form of a prediction contest between students of Master degrees in Applied Mathematics for IA. …

If you did not already know

Lightweight Probabilistic Deep Network google
Even though probabilistic treatments of neural networks have a long history, they have not found widespread use in practice. Sampling approaches are often too slow already for simple networks. The size of the inputs and the depth of typical CNN architectures in computer vision only compound this problem. Uncertainty in neural networks has thus been largely ignored in practice, despite the fact that it may provide important information about the reliability of predictions and the inner workings of the network. In this paper, we introduce two lightweight approaches to making supervised learning with probabilistic deep networks practical: First, we suggest probabilistic output layers for classification and regression that require only minimal changes to existing networks. Second, we employ assumed density filtering and show that activation uncertainties can be propagated in a practical fashion through the entire network, again with minor changes. Both probabilistic networks retain the predictive power of the deterministic counterpart, but yield uncertainties that correlate well with the empirical error induced by their predictions. Moreover, the robustness to adversarial examples is significantly increased. …

Proto-MAML google
Few-shot classification refers to learning a classifier for new classes given only a few examples. While a plethora of models have emerged to tackle this recently, we find the current procedure and datasets that are used to systematically assess progress in this setting lacking. To address this, we propose Meta-Dataset: a new benchmark for training and evaluating few-shot classifiers that is large-scale, consists of multiple datasets, and presents more natural and realistic tasks. The aim is to measure the ability of state-of-the-art models to leverage diverse sources of data to achieve higher generalization, and to evaluate that generalization ability in a more challenging setting. We additionally measure robustness of current methods to variations in the number of available examples and the number of classes. Finally our extensive empirical evaluation leads us to identify weaknesses in Prototypical Networks and MAML, two popular few-shot classification methods, and to propose a new method, Proto-MAML, which achieves improved performance on our benchmark. …

STROOPWAFEL google
Gravitational-wave observations of double compact object (DCO) mergers are providing new insights into the physics of massive stars and the evolution of binary systems. Making the most of expected near-future observations for understanding stellar physics will rely on comparisons with binary population synthesis models. However, the vast majority of simulated binaries never produce DCOs, which makes calculating such populations computationally inefficient. We present an importance sampling algorithm, STROOPWAFEL, that improves the computational efficiency of population studies of rare events, by focusing the simulation around regions of the initial parameter space found to produce outputs of interest. We implement the algorithm in the binary population synthesis code COMPAS, and compare the efficiency of our implementation to the standard method of Monte Carlo sampling from the birth probability distributions. STROOPWAFEL finds $\sim$25-200 times more DCO mergers than the standard sampling method with the same simulation size, and so speeds up simulations by up to two orders of magnitude. Finding more DCO mergers automatically maps the parameter space with far higher resolution than when using the traditional sampling. This increase in efficiency also leads to a decrease of a factor $\sim$3-10 in statistical sampling uncertainty for the predictions from the simulations. This is particularly notable for the distribution functions of observable quantities such as the black hole and neutron star chirp mass distribution, including in the tails of the distribution functions where predictions using standard sampling can be dominated by sampling noise. …

Neural Logic Machine (NLM) google
We propose the Neural Logic Machine (NLM), a neural-symbolic architecture for both inductive learning and logic reasoning. NLMs exploit the power of both neural networks—as function approximators, and logic programming—as a symbolic processor for objects with properties, relations, logic connectives, and quantifiers. After being trained on small-scale tasks (such as sorting short arrays), NLMs can recover lifted rules, and generalize to large-scale tasks (such as sorting longer arrays). In our experiments, NLMs achieve perfect generalization in a number of tasks, from relational reasoning tasks on the family tree and general graphs, to decision making tasks including sorting arrays, finding shortest paths, and playing the blocks world. Most of these tasks are hard to accomplish for neural networks or inductive logic programming alone. …

If you did not already know

Empirical Equilibrium google
We introduce empirical equilibrium, the prediction in a game that selects the Nash equilibria that can be approximated by a sequence of payoff-monotone distributions, a well-documented proxy for empirically plausible behavior. Then, we reevaluate implementation theory based on this equilibrium concept. We show that in a partnership dissolution environment with complete information, two popular auctions that are essentially equivalent for the Nash equilibrium prediction, can be expected to differ in fundamental ways when they are operated. Besides the direct policy implications, two general consequences follow. First, a mechanism designer may not be constrained by typical invariance properties. Second, a mechanism designer who does not account for the empirical plausibility of equilibria may inadvertently design implicitly biased mechanisms. …

DivGraphPointer google
Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches. …

Gated Recurrent Unit (GRU) google
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. Their performance on polyphonic music modeling and speech signal modeling was found to be similar to that of long short-term memory (LSTM). However, GRUs have been shown to exhibit better performance on smaller datasets. They have fewer parameters than LSTM, as they lack an output gate. …

GAN-test google
Generative adversarial networks (GANs) are one of the most popular methods for generating images today. While impressive results have been validated by visual inspection, a number of quantitative criteria have emerged only recently. We argue here that the existing ones are insufficient and need to be in adequation with the task at hand. In this paper we introduce two measures based on image classification—GAN-train and GAN-test, which approximate the recall (diversity) and precision (quality of the image) of GANs respectively. We evaluate a number of recent GAN approaches based on these two measures and demonstrate a clear difference in performance. Furthermore, we observe that the increasing difficulty of the dataset, from CIFAR10 over CIFAR100 to ImageNet, shows an inverse correlation with the quality of the GANs, as clearly evident from our measures. …