**Fast and Secure Distributed Learning in High Dimension**

Modern machine learning is distributed and the work of several machines is typically aggregated by \emph{averaging} which is the optimal rule in terms of speed, offering a speedup of

(with respect to using a single machine) when

processes are learning together. Distributing data and models poses however fundamental vulnerabilities, be they to software bugs, asynchrony, or worse, to malicious attackers controlling some machines or injecting misleading data in the network. Such behavior is best modeled as Byzantine failures, and averaging does not tolerate a single one from a worker. Krum, the first provably Byzantine resilient aggregation rule for SGD only uses one worker per step, which hampers its speed of convergence, especially in best case conditions when none of the workers is actually Byzantine. An idea, coined multi-Krum, of using

different workers per step was mentioned, without however any proof neither on its Byzantine resilience nor on its slowdown. More recently, it was shown that in high dimensional machine learning, guaranteeing convergence is not a sufficient condition for \emph{strong} Byzantine resilience. A improvement on Krum, coined Bulyan, was proposed and proved to guarantee stronger resilience. However, Bulyan suffers from the same weakness of Krum: using only one worker per step. This adds up to the aforementioned open problem and leaves the crucial need for both fast and strong Byzantine resilience unfulfilled. The present paper proposes using Bulyan over Multi-Krum (we call it Multi-Bulyan), a combination for which we provide proofs of strong Byzantine resilience, as well as an

slowdown, compared to averaging, the fastest (but non Byzantine resilient) rule for distributed machine learning, finally we prove that Multi-Bulyan inherits the

merits of both multi-Krum and Bulyan.

**Modeling Combinatorial Evolution in Time Series Prediction**

Time series modeling aims to capture the intrinsic factors underpinning observed data and its evolution. However, most existing studies ignore the evolutionary relations among these factors, which are what cause the combinatorial evolution of a given time series. In this paper, we propose to represent time-varying relations among intrinsic factors of time series data by means of an evolutionary state graph structure. Accordingly, we propose the Evolutionary Graph Recurrent Networks (EGRN) to learn representations of these factors, along with the given time series, using a graph neural network framework. The learned representations can then be applied to time series classification tasks. From our experiment results, based on six real-world datasets, it can be seen that our approach clearly outperforms ten state-of-the-art baseline methods (e.g. +5% in terms of accuracy, and +15% in terms of F1 on average). In addition, we demonstrate that due to the graph structure’s improved interpretability, our method is also able to explain the logical causes of the predicted events.

**Capturing Evolution Genes for Time Series Data**

The modeling of time series is becoming increasingly critical in a wide variety of applications. Overall, data evolves by following different patterns, which are generally caused by different user behaviors. Given a time series, we define the evolution gene to capture the latent user behaviors and to describe how the behaviors lead to the generation of time series. In particular, we propose a uniform framework that recognizes different evolution genes of segments by learning a classifier, and adopt an adversarial generator to implement the evolution gene by estimating the segments’ distribution. Experimental results based on a synthetic dataset and five real-world datasets show that our approach can not only achieve a good prediction results (e.g., averagely +10.56% in terms of F1), but is also able to provide explanations of the results.

**Hyperparameter Estimation in Bayesian MAP Estimation: Parameterizations and Consistency**

The Bayesian formulation of inverse problems is attractive for three primary reasons: it provides a clear modelling framework; means for uncertainty quantification; and it allows for principled learning of hyperparameters. The posterior distribution may be explored by sampling methods, but for many problems it is computationally infeasible to do so. In this situation maximum a posteriori (MAP) estimators are often sought. Whilst these are relatively cheap to compute, and have an attractive variational formulation, a key drawback is their lack of invariance under change of parameterization. This is a particularly significant issue when hierarchical priors are employed to learn hyperparameters. In this paper we study the effect of the choice of parameterization on MAP estimators when a conditionally Gaussian hierarchical prior distribution is employed. Specifically we consider the centred parameterization, the natural parameterization in which the unknown state is solved for directly, and the noncentred parameterization, which works with a whitened Gaussian as the unknown state variable, and arises when considering dimension-robust MCMC algorithms; MAP estimation is well-defined in the nonparametric setting only for the noncentred parameterization. However, we show that MAP estimates based on the noncentred parameterization are not consistent as estimators of hyperparameters; conversely, we show that limits of finite-dimensional centred MAP estimators are consistent as the dimension tends to infinity. We also consider empirical Bayesian hyperparameter estimation, show consistency of these estimates, and demonstrate that they are more robust with respect to noise than centred MAP estimates. An underpinning concept throughout is that hyperparameters may only be recovered up to measure equivalence, a well-known phenomenon in the context of the Ornstein-Uhlenbeck process.

**Digital Passport: A Novel Technological Strategy for Intellectual Property Protection of Convolutional Neural Networks**

In order to prevent deep neural networks from being infringed by unauthorized parties, we propose a generic solution which embeds a designated digital passport into a network, and subsequently, either paralyzes the network functionalities for unauthorized usages or maintain its functionalities in the presence of a verified passport. Such a desired network behavior is successfully demonstrated in a number of implementation schemes, which provide reliable, preventive and timely protections against tens of thousands of fake-passport deceptions. Extensive experiments also show that the deep neural network performance under unauthorized usages deteriorate significantly (e.g. with 33% to 82% reductions of CIFAR10 classification accuracies), while networks endorsed with valid passports remain intact.

**Statistical inference with anchored Bayesian mixture of regressions models: A case study analysis of allometric data**

We present a case study in which we use a mixture of regressions model to improve on an ill-fitting simple linear regression model relating log brain mass to log body mass for 100 placental mammalian species. The slope of this regression model is of particular scientific interest because it corresponds to a constant that governs a hypothesized allometric power law relating brain mass to body mass. A specific line of investigation is to determine whether the regression parameters vary across subgroups of related species. We model these data using an anchored Bayesian mixture of regressions model, which modifies the standard Bayesian Gaussian mixture by pre-assigning small subsets of observations to given mixture components with probability one. These observations (called anchor points) break the relabeling invariance typical of exchangeable model specifications (the so-called label-switching problem). A careful choice of which observations to pre-classify to which mixture components is key to the specification of a well-fitting anchor model. In the article we compare three strategies for the selection of anchor points. The first assumes that the underlying mixture of regressions model holds and assigns anchor points to different components to maximize the information about their labeling. The second makes no assumption about the relationship between x and y and instead identifies anchor points using a bivariate Gaussian mixture model. The third strategy begins with the assumption that there is only one mixture regression component and identifies anchor points that are representative of a clustering structure based on case-deletion importance sampling weights. We compare the performance of the three strategies on the allometric data set and use auxiliary taxonomic information about the species to evaluate the model-based classifications estimated from these models.

**Large-Scale Spectrum Occupancy Learning via Tensor Decomposition and LSTM Networks**

A new paradigm for large-scale spectrum occupancy learning based on long short-term memory (LSTM) recurrent neural networks is proposed. Studies have shown that spectrum usage is a highly correlated time series. Moreover, there is a correlation for occupancy of spectrum between different frequency channels. Therefore, revealing all these correlations using learning and prediction of one-dimensional time series is not a trivial task. In this paper, we introduce a new framework for representing the spectrum measurements in a tensor format. Next, a time-series prediction method based on CANDECOMP/PARFAC (CP) tensor decomposition and LSTM recurrent neural networks is proposed. The proposed method is computationally efficient and is able to capture different types of correlation within the measured spectrum. Moreover, it is robust against noise and missing entries of sensed spectrum. The superiority of the proposed method is evaluated over a large-scale synthetic dataset in terms of prediction accuracy and computational efficiency.

**Enabling Explainable Fusion in Deep Learning with Fuzzy Integral Neural Networks**

Information fusion is an essential part of numerous engineering systems and biological functions, e.g., human cognition. Fusion occurs at many levels, ranging from the low-level combination of signals to the high-level aggregation of heterogeneous decision-making processes. While the last decade has witnessed an explosion of research in deep learning, fusion in neural networks has not observed the same revolution. Specifically, most neural fusion approaches are ad hoc, are not understood, are distributed versus localized, and/or explainability is low (if present at all). Herein, we prove that the fuzzy Choquet integral (ChI), a powerful nonlinear aggregation function, can be represented as a multi-layer network, referred to hereafter as ChIMP. We also put forth an improved ChIMP (iChIMP) that leads to a stochastic gradient descent-based optimization in light of the exponential number of ChI inequality constraints. An additional benefit of ChIMP/iChIMP is that it enables eXplainable AI (XAI). Synthetic validation experiments are provided and iChIMP is applied to the fusion of a set of heterogeneous architecture deep models in remote sensing. We show an improvement in model accuracy and our previously established XAI indices shed light on the quality of our data, model, and its decisions.

**Prediction and outlier detection: a distribution-free prediction set with a balanced objective**

We consider the multi-class classification problem when the training data and the out-of-sample test data may have different distributions and propose a method called BCOPS (balanced and conformal optimized prediction set) that constructs a prediction set C(x) which tries to optimize out-of-sample performance, aiming to include the correct class as often as possible, but also detecting outliers x, for which the method returns no prediction (corresponding to C(x) equal to the empty set). BCOPS combines supervised-learning algorithms with the method of conformal prediction to minimize a misclassification loss averaged over the out-of-sample distribution. The constructed prediction sets have a finite-sample coverage guarantee without distributional assumptions. We also develop a variant of BCOPS in the online setting where we optimize the misclassification loss averaged over a proxy of the out-of-sample distribution. We also describe new methods for the evaluation of out-of-sample performance with mismatched data. We prove asymptotic consistency and efficiency of the proposed methods under suitable assumptions and illustrate our methods on real data examples.

**Learning Robotic Manipulation through Visual Planning and Acting**

Planning for robotic manipulation requires reasoning about the changes a robot can affect on objects. When such interactions can be modelled analytically, as in domains with rigid objects, efficient planning algorithms exist. However, in both domestic and industrial domains, the objects of interest can be soft, or deformable, and hard to model analytically. For such cases, we posit that a data-driven modelling approach is more suitable. In recent years, progress in deep generative models has produced methods that learn to `imagine’ plausible images from data. Building on the recent Causal InfoGAN generative model, in this work we learn to imagine goal-directed object manipulation directly from raw image data of self-supervised interaction of the robot with the object. After learning, given a goal observation of the system, our model can generate an imagined plan — a sequence of images that transition the object into the desired goal. To execute the plan, we use it as a reference trajectory to track with a visual servoing controller, which we also learn from the data as an inverse dynamics model. In a simulated manipulation task, we show that separating the problem into visual planning and visual tracking control is more sample efficient and more interpretable than alternative data-driven approaches. We further demonstrate our approach on learning to imagine and execute in 3 environments, the final of which is deformable rope manipulation on a PR2 robot.

**Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization**

Knowledge graphs capture interlinked information between entities and they represent an attractive source of structured information that can be harnessed for recommender systems. However, existing recommender engines use knowledge graphs by manually designing features, do not allow for end-to-end training, or provide poor scalability. Here we propose Knowledge Graph Convolutional Networks (KGCN), an end-to-end trainable framework that harnesses item relationships captured by the knowledge graph to provide better recommendations. Conceptually, KGCN computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relations for a given user and then transforming the knowledge graph into a user-specific weighted graph. Then, KGCN applies a graph convolutional neural network that computes an embedding of an item node by propagating and aggregating knowledge graph neighborhood information. Moreover, to provide better inductive bias KGCN uses label smoothness (LS), which provides regularization over edge weights and we prove that it is equivalent to label propagation scheme on a graph. Finally, We unify KGCN and LS regularization, and present a scalable minibatch implementation for KGCN-LS model. Experiments show that KGCN-LS outperforms strong baselines in four datasets. KGCN-LS also achieves great performance in sparse scenarios and is highly scalable with respect to the knowledge graph size.

**Controlled Natural Languages and Default Reasoning**

Controlled natural languages (CNLs) are effective languages for knowledge representation and reasoning. They are designed based on certain natural languages with restricted lexicon and grammar. CNLs are unambiguous and simple as opposed to their base languages. They preserve the expressiveness and coherence of natural languages. In this report, we focus on a class of CNLs, called machine-oriented CNLs, which have well-defined semantics that can be deterministically translated into formal languages, such as Prolog, to do logical reasoning. Over the past 20 years, a number of machine-oriented CNLs emerged and have been used in many application domains for problem solving and question answering. However, few of them support non-monotonic inference. In our work, we propose non-monotonic extensions of CNL to support defeasible reasoning. In the first part of this report, we survey CNLs and compare three influential systems: Attempto Controlled English (ACE), Processable English (PENG), and Computer-processable English (CPL). We compare their language design, semantic interpretations, and reasoning services. In the second part of this report, we first identify typical non-monotonicity in natural languages, such as defaults, exceptions and conversational implicatures. Then, we propose their representation in CNL and the corresponding formalizations in a form of defeasible reasoning known as Logic Programming with Defaults and Argumentation Theory (LPDA).

**Hadamard Matrix Guided Online Hashing**

Online image hashing has received increasing research attention recently, which receives large-scale data in a streaming manner to update the hash functions on-the-fly. Its key challenge lies in the difficulty in balancing the learning timeliness and model accuracy. To this end, most works exploit a supervised setting, i.e., using class labels to boost the hashing performance, which defects in two aspects: First, large amount of training batches are required to learn up-to-date hash functions, which however largely increase the learning complexity. Second, strong constraints, e.g., orthogonal or similarity preserving, are used, which are however typically relaxed and lead to large accuracy drop. To handle the above challenges, in this paper, a novel supervised online hashing scheme termed Hadamard Matrix Guided Online Hashing (HMOH) is proposed. Our key innovation lies in the construction and usage of Hadamard matrix, which is an orthogonal binary matrix and is built via Sylvester method. To release the need of strong constraints, we regard each column of Hadamard matrix as the target code for each class label, which by nature satisfies several desired properties of hashing codes. To accelerate the online training, the LSH is first adopted to align the length of target code and the to-be-learned binary code. And then, we treat the learning of hash functions as a set of binary classification problems to fit the assigned target code. Finally, we propose to ensemble the learned models in all rounds to maximally preserve the information of past streaming data. The superior accuracy and efficiency of the proposed method are demonstrated through extensive experiments on three widely-used datasets comparing to various state-of-the-art methods.

**Structural Equation Modeling using Computation Graphs**

Structural equation modeling (SEM) is evolving as available data is becoming more complex, reaching the limits of what traditional estimation approaches can achieve. As SEM expands to ever larger, more complex applications, the estimation challenge grows and currently available methods will be insufficient. To overcome this challenge in SEM, we see an opportunity to use existing solutions from the field of deep learning, which has been pioneering methods for estimation of complex models for decades. To this end, this paper introduces computation graphs, a flexible method of specifying objective functions. When combined with state-of-the-art optimizers, we argue that our computation graph approach is capable not only of estimating SEM models, but also of rapidly extending them — without the need of bespoke software development for each new extension. We show that several SEM improvements follow naturally from our approach; not only existing extensions such as least absolute deviation estimation and penalized regression models, but also novel extensions such as spike-and-slab penalties for sparse factor analysis. By applying computation graphs to SEM, we hope to greatly accelerate the process of developing SEM techniques, paving the way for novel applications. The accompanying R package tensorsem is under active development.

**Stability Properties of Graph Neural Networks**

Data stemming from networks exhibit an irregular support, whereby each data element is related by arbitrary pairwise relationships determined by the network. Graph neural networks (GNNs) have emerged as information processing architectures that exploit the particularities of this underlying support. The use of nonlinearities in GNNs, coupled with the fact that filters are learned from data, raises mathematical challenges that have precluded the development of theoretical results that would give insight in the reasons for the remarkable performance of GNNs. In this work, we prove the property of stability, that states that a small change in the support of the data leads to a small (bounded) change in the output of the GNN. More specifically, we prove that the bound on the output difference of the GNN computed on one graph or another, is proportional to the difference between the graphs and the design parameters of the GNN, as long as the trained filters are integral Lipschitz. We exploit this result to provide some insights in the crucial effect that nonlinearities have in obtaining an architecture that is both stable and selective, a feat that is impossible to achieve if using only linear filters.

**GraphSE$^2$: An Encrypted Graph Database for Privacy-Preserving Social Search**

In this paper, we propose GraphSE

, an encrypted graph database for online social network services to address massive data breaches. GraphSE

preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE

provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE

with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE

is practical for querying a social graph with a million of users.

**Interpret Federated Learning with Shapley Values**

Federated Learning is introduced to protect privacy by distributing training data into multiple parties. Each party trains its own model and a meta-model is constructed from the sub models. In this way the details of the data are not disclosed in between each party. In this paper we investigate the model interpretation methods for Federated Learning, specifically on the measurement of feature importance of vertical Federated Learning where feature space of the data is divided into two parties, namely host and guest. For host party to interpret a single prediction of vertical Federated Learning model, the interpretation results, namely the feature importance, are very likely to reveal the protected data from guest party. We propose a method to balance the model interpretability and data privacy in vertical Federated Learning by using Shapley values to reveal detailed feature importance for host features and a unified importance value for federated guest features. Our experiments indicate robust and informative results for interpreting Federated Learning models.

**Segregation Network for Multi-Class Novelty Detection**

The problem of multiple class novelty detection is gaining increasing importance due to the large availability of multimedia data and the increasing requirement of the classification models to work in an open set scenario. To this end, novelty detection tries to answer this important question: given a test example should we even try to classify it? In this work, we design a novel deep learning framework, termed Segregation Network, which is trained using the mixup technique. We construct interpolated points using convex combinations of pairs of training data and use our novel loss function for prediction of its constituent classes. During testing, for each input query, mixed samples with the known class prototypes are generated and passed through the proposed network. The output of the network reveals the constituent classes which can be used to determine whether the incoming data is from the known class set or not. Our algorithm is trained using just the data from the known classes and does not require any auxiliary dataset or attributes. Extensive evaluation on two benchmark datasets namely Caltech-256 and Stanford Dogs and comparison with the state-of-the-art justifies the effectiveness of the proposed framework.

**Novel Algorithms based on Majorization Minimization for Nonnegative Matrix Factorization**

Matrix decomposition is ubiquitous and has applications in various fields like speech processing, data mining and image processing to name a few. Under matrix decomposition, nonnegative matrix factorization is used to decompose a nonnegative matrix into a product of two nonnegative matrices which gives some meaningful interpretation of the data. Thus, nonnegative matrix factorization has an edge over the other decomposition techniques. In this paper, we propose two novel iterative algorithms based on Majorization Minimization (MM)-in which we formulate a novel upper bound and minimize it to get a closed form solution at every iteration. Since the algorithms are based on MM, it is ensured that the proposed methods will be monotonic. The proposed algorithms differ in the updating approach of the two nonnegative matrices. The first algorithm-Iterative Nonnegative Matrix Factorization (INOM) sequentially updates the two nonnegative matrices while the second algorithm-Parallel Iterative Nonnegative Matrix Factorization (PARINOM) parallely updates them. We also prove that the proposed algorithms converge to the stationary point of the problem. Simulations were conducted to compare the proposed methods with the existing ones and was found that the proposed algorithms performs better than the existing ones in terms of computational speed and convergence. KeyWords: Nonnegative matrix factorization, Majorization Minimization, Big Data, Parallel, Multiplicative Update

**Boosting Generative Models by Leveraging Cascaded Meta-Models**

Deep generative models are effective methods of modeling data. However, it is not easy for a single generative model to faithfully capture the distributions of complex data such as images. In this paper, we propose an approach for boosting generative models, which cascades meta-models together to produce a stronger model. Any hidden variable meta-model (e.g., RBM and VAE) which supports likelihood evaluation can be leveraged. We derive a decomposable variational lower bound of the boosted model, which allows each meta-model to be trained separately and greedily. Besides, our framework can be extended to semi-supervised boosting, where the boosted model learns a joint distribution of data and labels. Finally, we combine our boosting framework with the multiplicative boosting framework, which further improves the learning power of generative models.

**Deep Learning: a new definition of artificial neuron with double weight**

Deep learning is a subset of a broader family of machine learning methods based on learning data representations. These models are inspired by human biological nervous systems, even if there are various differences pertaining to the structural and functional properties of biological brains. The elementary constituents of deep learning models are neurons, which can be considered as functions that receive inputs and produce an output that is a weighted sum of the inputs fed through an activation function. Several models of neurons were proposed in the course of the years that are all based on learnable parameters called weights. In this paper we present a new type of artificial neuron, the double-weight neuron,characterized by additional learnable weights that lead to a more complex and accurate system. We tested a feed-forward and convolutional neural network consisting of double-weight neurons on the MNIST dataset, and we tested a convolution network on the CIFAR-10 dataset. For MNIST we find a

and

improved classification accuracy, respectively, when compared to a standard feed-forward and convolutional neural network built with the same sets of hyperparameters. For CIFAR-10 we find a

improved classification accuracy. We thus conclude that this novel artificial neuron can be considered as a valuable alternative to common ones.

**Understanding eWhoring**

In this paper, we describe a new type of online fraud, referred to as ‘eWhoring’ by offenders. This crime script analysis provides an overview of the ‘eWhoring’ business model, drawing on more than 6,500 posts crawled from an online underground forum. This is an unusual fraud type, in that offenders readily share information about how it is committed in a way that is almost prescriptive. There are economic factors at play here, as providing information about how to make money from ‘eWhoring’ can increase the demand for the types of images that enable it to happen. We find that sexualised images are typically stolen and shared online. While some images are shared for free, these can quickly become ‘saturated’, leading to the demand for (and trade in) more exclusive ‘packs’. These images are then sold to unwitting customers who believe they have paid for a virtual sexual encounter. A variety of online services are used for carrying out this fraud type, including email, video, dating sites, social media, classified advertisements, and payment platforms. This analysis reveals potential interventions that could be applied to each stage of the crime commission process to prevent and disrupt this crime type.

**Dissecting Graph Neural Networks on Graph Classification**

Graph Neural Nets (GNNs) have received increasing attentions, partially due to their superior performance in many node and graph classification tasks. However, there is a lack of understanding on what they are learning and how sophisticated the learned graph functions are. In this work, we first propose Graph Feature Network (GFN), a simple lightweight neural net defined on a set of graph augmented features. We then propose a dissection of GNNs on graph classification into two parts: 1) the graph filtering, where graph-based neighbor aggregations are performed, and 2) the set function, where a set of hidden node features are composed for prediction. To test the importance of these two parts separately, we prove and leverage the connection that GFN can be derived by linearizing graph filtering part of GNN. Empirically we perform evaluations on common graph classification benchmarks. To our surprise, we find that, despite the simplification, GFN could match or exceed the best accuracies produced by recently proposed GNNs, with a fraction of computation cost. Our results provide new perspectives on both the functions that GNNs learned and the current benchmarks for evaluating them.

**Language in Our Time: An Empirical Analysis of Hashtags**

Hashtags in online social networks have gained tremendous popularity during the past five years. The resulting large quantity of data has provided a new lens into modern society. Previously, researchers mainly rely on data collected from Twitter to study either a certain type of hashtags or a certain property of hashtags. In this paper, we perform the first large-scale empirical analysis of hashtags shared on Instagram, the major platform for hashtag-sharing. We study hashtags from three different dimensions including the temporal-spatial dimension, the semantic dimension, and the social dimension. Extensive experiments performed on three large-scale datasets with more than 7 million hashtags in total provide a series of interesting observations. First, we show that the temporal patterns of hashtags can be categorized into four different clusters, and people tend to share fewer hashtags at certain places and more hashtags at others. Second, we observe that a non-negligible proportion of hashtags exhibit large semantic displacement. We demonstrate hashtags that are more uniformly shared among users, as quantified by the proposed hashtag entropy, are less prone to semantic displacement. In the end, we propose a bipartite graph embedding model to summarize users’ hashtag profiles, and rely on these profiles to perform friendship prediction. Evaluation results show that our approach achieves an effective prediction with AUC (area under the ROC curve) above 0.8 which demonstrates the strong social signals possessed in hashtags.

**Deep Layered LMS Predictor**

In this study, we present a new approach to design a Least Mean Squares (LMS) predictor. This approach exploits the concept of deep neural networks and their supremacy in terms of performance and accuracy. The new LMS predictor is implemented as a deep neural network using multiple non linear LMS filters. The network consists of multiple layers with nonlinear activation functions, where each neuron in the hidden layers corresponds to a certain FIR filter output which goes through nonlinearity. The output of the last layer is the prediction. We hypothesize that this approach will outperform the traditional adaptive filters.

**Explainable AI for Trees: From Local Explanations to Global Understanding**

Tree-based machine learning models such as random forests, decision trees, and gradient boosted trees are the most popular non-linear predictive models used in practice today, yet comparatively little attention has been paid to explaining their predictions. Here we significantly improve the interpretability of tree-based models through three main contributions: 1) The first polynomial time algorithm to compute optimal explanations based on game theory. 2) A new type of explanation that directly measures local feature interaction effects. 3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to i) identify high magnitude but low frequency non-linear mortality risk factors in the general US population, ii) highlight distinct population sub-groups with shared risk characteristics, iii) identify non-linear interaction effects among risk factors for chronic kidney disease, and iv) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains.

**VizNet: Towards A Large-Scale Visualization Learning and Benchmarking Repository**

Researchers currently rely on ad hoc datasets to train automated visualization tools and evaluate the effectiveness of visualization designs. These exemplars often lack the characteristics of real-world datasets, and their one-off nature makes it difficult to compare different techniques. In this paper, we present VizNet: a large-scale corpus of over 31 million datasets compiled from open data repositories and online visualization galleries. On average, these datasets comprise 17 records over 3 dimensions and across the corpus, we find 51% of the dimensions record categorical data, 44% quantitative, and only 5% temporal. VizNet provides the necessary common baseline for comparing visualization design techniques, and developing benchmark models and algorithms for automating visual analysis. To demonstrate VizNet’s utility as a platform for conducting online crowdsourced experiments at scale, we replicate a prior study assessing the influence of user task and data distribution on visual encoding effectiveness, and extend it by considering an additional task: outlier detection. To contend with running such studies at scale, we demonstrate how a metric of perceptual effectiveness can be learned from experimental results, and show its predictive power across test datasets.

**Kyrix: Interactive Visual Data Exploration at Scale**

Scalable interactive visual data exploration is crucial in many domains due to increasingly large datasets generated at rapid rates. Details-on-demand provides a useful interaction paradigm for exploring large datasets, where users start at an overview, find regions of interest, zoom in to see detailed views, zoom out and then repeat. This paradigm is the primary user interaction mode of widely-used systems such as Google Maps, Aperture Tiles and ForeCache. These earlier systems, however, are highly customized with hardcoded visual representations and optimizations. A more general framework is needed to facilitate the development of visual data exploration systems at scale. In this paper, we present Kyrix, an end-to-end system for developing scalable details-on-demand data exploration applications. Kyrix provides developers with a declarative model for easy specification of general visualizations. Behind the scenes, Kyrix utilizes a suite of performance optimization techniques to achieve a response time within 500ms for various user interactions. We also report results from a performance study which shows that a novel dynamic fetching scheme adopted by Kyrix outperforms tile-based fetching used in earlier systems.

**Mega-Reward: Achieving Human-Level Play without Extrinsic Rewards**

Intrinsic rewards are introduced to simulate how human intelligence works, which are usually evaluated by intrinsically-motivated play, i.e., playing games without extrinsic rewards but evaluated with extrinsic rewards. However, none of the existing intrinsic reward approaches can achieve human-level performance under this very challenging setting of intrinsically-motivated play. In this work, we propose a novel megalomania-driven intrinsic reward (mega-reward) which, to our knowledge, is the first approach that achieves comparable human-level performance in intrinsically-motivated play. The intuition of mega-rewards comes from the observation that infants’ intelligence develops when they try to gain more control on entities in an environment; therefore, mega-reward aims to maximize the control capabilities of agents on given entities in a given environment. To formalize mega-reward, a relational transition model is proposed to bridge the gaps between direct and latent control. Experimental studies show that mega-reward can (i) greatly outperform all state-of-the-art intrinsic reward approaches, (ii) generally achieves the same level of performance as Ex-PPO and professional human-level scores; and (iii) has also superior performance when it is incorporated with extrinsic reward.

**Predictive Ensemble Learning with Application to Scene Text Detection**

Deep learning based approaches have achieved significant progresses in different tasks like classification, detection, segmentation, and so on. Ensemble learning is widely known to further improve performance by combining multiple complementary models. It is easy to apply ensemble learning for classification tasks, for example, based on averaging, voting, or other methods. However, for other tasks (like object detection) where the outputs are varying in quantity and unable to be simply compared, the ensemble of multiple models become difficult. In this paper, we propose a new method called Predictive Ensemble Learning (PEL), based on powerful predictive ability of deep neural networks, to directly predict the best performing model among a pool of base models for each test example, thus transforming ensemble learning to a traditional classification task. Taking scene text detection as the application, where no suitable ensemble learning strategy exists, PEL can significantly improve the performance, compared to either individual state-of-the-art models, or the fusion of multiple models by non-maximum suppression. Experimental results show the possibility and potential of PEL in predicting different models’ performance based only on a query example, which can be extended for ensemble learning in many other complex tasks.

**Learning to Convolve: A Generalized Weight-Tying Approach**

Recent work (Cohen & Welling, 2016) has shown that generalizations of convolutions, based on group theory, provide powerful inductive biases for learning. In these generalizations, filters are not only translated but can also be rotated, flipped, etc. However, coming up with exact models of how to rotate a 3 x 3 filter on a square pixel-grid is difficult. In this paper, we learn how to transform filters for use in the group convolution, focussing on roto-translation. For this, we learn a filter basis and all rotated versions of that filter basis. Filters are then encoded by a set of rotation invariant coefficients. To rotate a filter, we switch the basis. We demonstrate we can produce feature maps with low sensitivity to input rotations, while achieving high performance on MNIST and CIFAR-10.

**On Graph Classification Networks, Datasets and Baselines**

Graph classification receives a great deal of attention from the non-Euclidean machine learning community. Recent advances in graph coarsening have enabled the training of deeper networks and produced new state-of-the-art results in many benchmark tasks. We examine how these architectures train and find that performance is highly-sensitive to initialisation and depends strongly on jumping-knowledge structures. We then show that, despite the great complexity of these models, competitive performance is achieved by the simplest of models — structure-blind MLP, single-layer GCN and fixed-weight GCN — and propose these be included as baselines in future.