RankCGAN
In this paper, we investigate the use of generative adversarial networks in the task of image generation according to subjective measures of semantic attributes. Unlike the standard (CGAN) that generates images from discrete categorical labels, our architecture handles both continuous and discrete scales. Given pairwise comparisons of images, our model, called RankCGAN, performs two tasks: it learns to rank images using a subjective measure; and it learns a generative model that can be controlled by that measure. RankCGAN associates each subjective measure of interest to a distinct dimension of some latent space. We perform experiments on UT-Zap50K, PubFig and OSR datasets and demonstrate that the model is expressive and diverse enough to conduct two-attribute exploration and image editing. …
Missing Value PC (MVPC)
Missing data are ubiquitous in many domains such as healthcare. Depending on how they are missing, the (conditional) independence relations in the observed data may be different from those for the complete data generated by the underlying causal process and, as a consequence, simply applying existing causal discovery methods to the observed data may lead to wrong conclusions. It is then essential to extend existing causal discovery approaches to find true underlying causal structure from such incomplete data. In this paper, we aim at solving this problem for data that are missing with different mechanisms, including missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). With missingness mechanisms represented by missingness Graph (m-Graph), we analyze conditions under which addition correction is needed to derive conditional independence/dependence relations in the complete data. Based on our analysis, we propose missing value PC (MVPC), which combines additional corrections with traditional causal discovery algorithm, in particular, PC. Our proposed MVPC is shown in theory to give asymptotically correct results even using data that are MAR and MNAR. Experiment results illustrate that the proposed algorithm can correct the conditional independence for values MCAR, MAR and rather general cases of values MNAR both with synthetic data as well as real-life healthcare application. …
Diversified, Early-termination-Enabled, and Parallel Bayesian Optimization (DEEP-BO)
The performance of deep neural networks (DNN) is very sensitive to the particular choice of hyper-parameters. To make it worse, the shape of the learning curve can be significantly affected when a technique like batchnorm is used. As a result, hyperparameter optimization of deep networks can be much more challenging than traditional machine learning models. In this work, we start from well known Bayesian Optimization solutions and provide enhancement strategies specifically designed for hyperparameter optimization of deep networks. The resulting algorithm is named as DEEP-BO (Diversified, Early-termination-Enabled, and Parallel Bayesian Optimization). When evaluated over six DNN benchmarks, DEEP-BO easily outperforms or shows comparable performance with some of the well-known solutions including GP-Hedge, Hyperband, BOHB, Median Stopping Rule, and Learning Curve Extrapolation. The code used is made publicly available at https://…/DEEP-BO. …
Three-Stage Subspace Clustering Framework (3S-SC)
Subspace clustering (SC) refers to the problem of clustering high-dimensional data into a union of low-dimensional subspaces. Based on spectral clustering, state-of-the-art approaches solve SC problem within a two-stage framework. In the first stage, data representation techniques are applied to draw an affinity matrix from the original data. In the second stage, spectral clustering is directly applied to the affinity matrix so that data can be grouped into different subspaces. However, the affinity matrix obtained in the first stage usually fails to reveal the authentic relationship between data points, which leads to inaccurate clustering results. In this paper, we propose a universal Three-Stage Subspace Clustering framework (3S-SC). Graph-Based Transformation and Optimization (GBTO) is added between data representation and spectral clustering. The affinity matrix is obtained in the first stage, then it goes through the second stage, where the proposed GBTO is applied to generate a reconstructed affinity matrix with more authentic similarity between data points. Spectral clustering is applied after GBTO, which is the third stage. We verify our 3S-SC framework with GBTO through theoretical analysis. Experiments on both synthetic data and the real-world data sets of handwritten digits and human faces demonstrate the universality of the proposed 3S-SC framework in improving the connectivity and accuracy of SC methods based on $\ell_0$, $\ell_1$, $\ell_2$ or nuclear norm regularization. …
If you did not already know
28 Sunday May 2023
Posted What is ...
in