**Polygon-RNN++**

Manually labeling datasets with object masks is extremely time consuming. In this work, we follow the idea of Polygon-RNN to produce polygonal annotations of objects interactively using humans-in-the-loop. We introduce several important improvements to the model: 1) we design a new CNN encoder architecture, 2) show how to effectively train the model with Reinforcement Learning, and 3) significantly increase the output resolution using a Graph Neural Network, allowing the model to accurately annotate high-resolution objects in images. Extensive evaluation on the Cityscapes dataset shows that our model, which we refer to as Polygon-RNN++, significantly outperforms the original model in both automatic (10% absolute and 16% relative improvement in mean IoU) and interactive modes (requiring 50% fewer clicks by annotators). We further analyze the cross-domain scenario in which our model is trained on one dataset, and used out of the box on datasets from varying domains. The results show that Polygon-RNN++ exhibits powerful generalization capabilities, achieving significant improvements over existing pixel-wise methods. Using simple online fine-tuning we further achieve a high reduction in annotation time for new datasets, moving a step closer towards an interactive annotation tool to be used in practice. … **Optimal Sparse Decision Tree**

Decision tree algorithms have been among the most popular algorithms for interpretable (transparent) machine learning since the early 1980’s. The problem that has plagued decision tree algorithms since their inception is their lack of optimality, or lack of guarantees of closeness to optimality: decision tree algorithms are often greedy or myopic, and sometimes produce unquestionably suboptimal models. Hardness of decision tree optimization is both a theoretical and practical obstacle, and even careful mathematical programming approaches have not been able to solve these problems efficiently. This work introduces the first practical algorithm for optimal decision trees for binary variables. The algorithm is a co-design of analytical bounds that reduce the search space and modern systems techniques, including data structures and a custom bit-vector library. We highlight possible steps to improving the scalability and speed of future generations of this algorithm based on insights from our theory and experiments. … **Population-Attributable Fraction (PAF)**

The contribution of a risk factor to a disease or a death is quantified using the population attributable fraction (PAF). PAF is the proportional reduction in population disease or mortality that would occur if exposure to a risk factor were reduced to an alternative ideal exposure scenario (eg. no tobacco use). Many diseases are caused by multiple risk factors, and individual risk factors may interact in their impact on overall risk of disease. As a result, PAFs for individual risk factors often overlap and add up to more than 100 percent.

Causal inference with multi-state models – estimands and estimators of the population-attributable fraction … **Nature Language Inference (NLI)**

Nature language inference (NLI) task is a predictive task of determining the inference relationship of a pair of natural language sentences. With the increasing popularity of NLI, many state-of-the-art predictive models have been proposed with impressive performances. However, several works have noticed the statistical irregularities in the collected NLI data set that may result in an over-estimated performance of these models and proposed remedies. …

# If you did not already know

**19**
*Tuesday*
Nov 2019

Posted What is ...

in