**Surrogate Objective Function**

Influence maximization has found applications in a wide range of real-world problems, for instance, viral marketing of products in an online social network, and information propagation of valuable information such as job vacancy advertisements and health-related information. While existing algorithmic techniques usually aim at maximizing the total number of people influenced, the population often comprises several socially salient groups, e.g., based on gender or race. As a result, these techniques could lead to disparity across different groups in receiving important information. Furthermore, in many of these applications, the spread of influence is time-critical, i.e., it is only beneficial to be influenced before a time deadline. As we show in this paper, the time-criticality of the information could further exacerbate the disparity of influence across groups. This disparity, introduced by algorithms aimed at maximizing total influence, could have far-reaching consequences, impacting people’s prosperity and putting minority groups at a big disadvantage. In this work, we propose a notion of group fairness in time-critical influence maximization. We introduce surrogate objective functions to solve the influence maximization problem under fairness considerations. By exploiting the submodularity structure of our objectives, we provide computationally efficient algorithms with guarantees that are effective in enforcing fairness during the propagation process. We demonstrate the effectiveness of our approach through synthetic and real-world experiments. … **Max of Weighed Distance (MWD)**

Adversarial attacks add perturbations to the input features with the intent of changing the classification produced by a machine learning system. Small perturbations can yield adversarial examples which are misclassified despite being virtually indistinguishable from the unperturbed input. Classifiers trained with standard neural network techniques are highly susceptible to adversarial examples, allowing an adversary to create misclassifications of their choice. We introduce a new type of network unit, called MWD (max of weighed distance) units that have a built-in resistant to adversarial attacks. These units are highly non-linear, and we develop the techniques needed to effectively train them. We show that simple interval techniques for propagating perturbation effects through the network enables the efficient computation of robustness (i.e., accuracy guarantees) for MWD networks under any perturbations, including adversarial attacks. MWD networks are significantly more robust to input perturbations than ReLU networks. On permutation invariant MNIST, when test examples can be perturbed by 20% of the input range, MWD networks provably retain accuracy above 83%, while the accuracy of ReLU networks drops below 5%. The provable accuracy of MWD networks is superior even to the observed accuracy of ReLU networks trained with the help of adversarial examples. In the absence of adversarial attacks, MWD networks match the performance of sigmoid networks, and have accuracy only slightly below that of ReLU networks. … **ADaPTION Toolbox**

Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) are useful for many practical tasks in machine learning. Synaptic weights, as well as neuron activation functions within the deep network are typically stored with high-precision formats, e.g. 32 bit floating point. However, since storage capacity is limited and each memory access consumes power, both storage capacity and memory access are two crucial factors in these networks. Here we present a method and present the ADaPTION toolbox to extend the popular deep learning library Caffe to support training of deep CNNs with reduced numerical precision of weights and activations using fixed point notation. ADaPTION includes tools to measure the dynamic range of weights and activations. Using the ADaPTION tools, we quantized several CNNs including VGG16 down to 16-bit weights and activations with only 0.8% drop in Top-1 accuracy. The quantization, especially of the activations, leads to increase of up to 50% of sparsity especially in early and intermediate layers, which we exploit to skip multiplications with zero, thus performing faster and computationally cheaper inference. … **Automatic BAyesian Changepoints Under Sparsity (ABACUS)**

Change detection involves segmenting sequential data such that observations in the same segment share some desired properties. Multivariate change detection continues to be a challenging problem due to the variety of ways change points can be correlated across channels and the potentially poor signal-to-noise ratio on individual channels. In this paper, we are interested in locating additive outliers (AO) and level shifts (LS) in the unsupervised setting. We propose ABACUS, Automatic BAyesian Changepoints Under Sparsity, a Bayesian source separation technique to recover latent signals while also detecting changes in model parameters. Multi-level sparsity achieves both dimension reduction and modeling of signal changes. We show ABACUS has competitive or superior performance in simulation studies against state-of-the-art change detection methods and established latent variable models. We also illustrate ABACUS on two real application, modeling genomic profiles and analyzing household electricity consumption. …

# If you did not already know

**09**
*Monday*
May 2022

Posted What is ...

in