**Myelin**

Machine learning models benefit from large and diverse datasets. Using such datasets, however, often requires trusting a centralized data aggregator. For sensitive applications like healthcare and finance this is undesirable as it could compromise patient privacy or divulge trade secrets. Recent advances in secure and privacy-preserving computation, including trusted hardware enclaves and differential privacy, offer a way for mutually distrusting parties to efficiently train a machine learning model without revealing the training data. In this work, we introduce Myelin, a deep learning framework which combines these privacy-preservation primitives, and use it to establish a baseline level of performance for fully private machine learning. … **Superhighway Construction**

Cross-domain collaborative filtering (CF) aims to alleviate data sparsity in single-domain CF by leveraging knowledge transferred from related domains. Many traditional methods focus on enriching compared neighborhood relations in CF directly to address the sparsity problem. In this paper, we propose superhighway construction, an alternative explicit relation-enrichment procedure, to improve recommendations by enhancing cross-domain connectivity. Specifically, assuming partially overlapped items (users), superhighway bypasses multi-hop inter-domain paths between cross-domain users (items, respectively) with direct paths to enrich the cross-domain connectivity. The experiments conducted on a real-world cross-region music dataset and a cross-platform movie dataset show that the proposed superhighway construction significantly improves recommendation performance in both target and source domains. … **Wavenilm**

Non-intrusive load monitoring (NILM) helps meet energy conservation goals by estimating individual appliance power usage from a single aggregate measurement. Deep neural networks have become increasingly popular in attempting to solve NILM problems; however, many of them are not causal which is important for real-time application. We present a causal 1-D convolutional neural network inspired by WaveNet for NILM on low-frequency data. We also study using various components of the complex power signal for NILM, and demonstrate that using all four components available in a popular NILM dataset (current, active power, reactive power, and apparent power) we achieve faster convergence and higher performance than state-of-the-art results for the same dataset. … **Distributed Expectation-Maximization (DEM)**

The family of Expectation-Maximization (EM) algorithms provides a general approach to fitting flexible models for large and complex data. The expectation (E) step of EM-type algorithms is time-consuming in massive data applications because it requires multiple passes through the full data. We address this problem by proposing an asynchronous and distributed generalization of the EM called the Distributed EM (DEM). Using DEM, existing EM-type algorithms are easily extended to massive data settings by exploiting the divide-and-conquer technique and widely available computing power, such as grid computing. The DEM algorithm reserves two groups of computing processes called \emph{workers} and \emph{managers} for performing the E step and the maximization step (M step), respectively. The samples are randomly partitioned into a large number of disjoint subsets and are stored on the worker processes. The E step of DEM algorithm is performed in parallel on all the workers, and every worker communicates its results to the managers at the end of local E step. The managers perform the M step after they have received results from a $\gamma$-fraction of the workers, where $\gamma$ is a fixed constant in $(0, 1]$. The sequence of parameter estimates generated by the DEM algorithm retains the attractive properties of EM: convergence of the sequence of parameter estimates to a local mode and linear global rate of convergence. Across diverse simulations focused on linear mixed-effects models, the DEM algorithm is significantly faster than competing EM-type algorithms while having a similar accuracy. The DEM algorithm maintains its superior empirical performance on a movie ratings database consisting of 10 million ratings. …

# If you did not already know

**14**
*Saturday*
Nov 2020

Posted What is ...

in