• Home
  • About
  • Books
  • Courses
  • Documents
  • eBooks
  • Feeds
  • Images
  • Quotes
  • R Packages
  • What is …

AnalytiXon

~ Broaden your Horizon

Category Archives: Documents

Document worth reading: “Deep Semantic Segmentation of Natural and Medical Images: A Review”

31 Sunday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

The (medical) image semantic segmentation task consists of classifying each pixel of an image (or just several ones) into an instance, where each instance (or category) corresponding to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the main deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural improvements, data synthesis-based, loss function-based improvements, sequenced models, weakly supervised, and multi-task methods and further for each group we analyzed each variant of these groups and discuss limitations of the current approaches and future research directions for semantic image segmentation. Deep Semantic Segmentation of Natural and Medical Images: A Review

Document worth reading: “On-Device Machine Learning: An Algorithms and Learning Theory Perspective”

30 Saturday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

The current paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with the increasing number of smart devices and improved hardware, there is interest in performing model training on the device. Given this surge in interest, a comprehensive survey of the field from a device-agnostic perspective sets the stage for both understanding the state-of-the-art and for identifying open challenges and future avenues of research. Since on-device learning is an expansive field with connections to a large number of related topics in AI and machine learning (including online learning, model adaptation, one/few-shot learning, etc), covering such a large number of topics in a single survey is impractical. Instead, this survey finds a middle ground by reformulating the problem of on-device learning as resource constrained learning where the resources are compute and memory. This reformulation allows tools, techniques, and algorithms from a wide variety of research areas to be compared equitably. In addition to summarizing the state of the art, the survey also identifies a number of challenges and next steps for both the algorithmic and theoretical aspects of on-device learning. On-Device Machine Learning: An Algorithms and Learning Theory Perspective

Document worth reading: “A survey of blockchain frameworks and applications”

28 Thursday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

The applications of the blockchain technology are still being discov-ered. When a new potential disruptive technology emerges, there is a tendency to try to solve every problem with that technology. However, it is still necessary to determine what approach is the best for each type of application. To find how distributed ledgers solve existing problems, this study looks for blockchain frameworks in the academic world. Identifying the existing frameworks can demonstrate where the interest in the technology exists and where it can be miss-ing. This study encountered several blockchain frameworks in development. However, there are few references to operational needs, testing, and deploy of the technology. With the widespread use of the technology, either integrating with pre-existing solutions, replacing legacy systems, or new implementations, the need for testing, deploying, exploration, and maintenance is expected to in-tensify. A survey of blockchain frameworks and applications

Document worth reading: “Lecture Notes: Temporal Point Processes and the Conditional Intensity Function”

27 Wednesday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

These short lecture notes contain a not too technical introduction to point processes on the time line. The focus lies on defining these processes using the conditional intensity function. Furthermore, likelihood inference, methods of simulation and residual analysis for temporal point processes specified by a conditional intensity function are considered. Lecture Notes: Temporal Point Processes and the Conditional Intensity Function

Document worth reading: “Reinforcement Learning in Healthcare: A Survey”

26 Tuesday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

As a subfield of machine learning, \emph{reinforcement learning} (RL) aims at empowering one’s capabilities in behavioural decision making by using interaction experience with the world and an evaluative feedback. Unlike traditional supervised learning methods that usually rely on one-shot, exhaustive and supervised reward signals, RL tackles with sequential decision making problems with sampled, evaluative and delayed feedback simultaneously. Such distinctive features make RL technique a suitable candidate for developing powerful solutions in a variety of healthcare domains, where diagnosing decisions or treatment regimes are usually characterized by a prolonged and sequential procedure. This survey will discuss the broad applications of RL techniques in healthcare domains, in order to provide the research community with systematic understanding of theoretical foundations, enabling methods and techniques, existing challenges, and new insights of this emerging paradigm. By first briefly examining theoretical foundations and key techniques in RL research from efficient and representational directions, we then provide an overview of RL applications in a variety of healthcare domains, ranging from dynamic treatment regimes in chronic diseases and critical care, automated medical diagnosis from both unstructured and structured clinical data, as well as many other control or scheduling domains that have infiltrated many aspects of a healthcare system. Finally, we summarize the challenges and open issues in current research, and point out some potential solutions and directions for future research. Reinforcement Learning in Healthcare: A Survey

Document worth reading: “Deep Learning”

25 Monday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

Deep learning (DL) is a high dimensional data reduction technique for constructing high-dimensional predictors in input-output models. DL is a form of machine learning that uses hierarchical layers of latent features. In this article, we review the state-of-the-art of deep learning from a modeling and algorithmic perspective. We provide a list of successful areas of applications in Artificial Intelligence (AI), Image Processing, Robotics and Automation. Deep learning is predictive in its nature rather then inferential and can be viewed as a black-box methodology for high-dimensional function estimation. Deep Learning

Document worth reading: “Above the Clouds: A Brief Survey”

24 Sunday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

Cloud Computing is a versatile technology that can support a broad-spectrum of applications. The low cost of cloud computing and its dynamic scaling renders it an innovation driver for small companies, particularly in the developing world. Cloud deployed enterprise resource planning (ERP), supply chain management applications (SCM), customer relationship management (CRM) applications, medical applications, business applications and mobile applications have potential to reach millions of users. In this paper, we explore the different concepts involved in cloud computing and we also examine clouds from technical aspects. We highlight some of the opportunities in cloud computing underlining the importance of clouds showing why that technology must succeed and we have provided additional cloud computing problems that businesses may need to address. Finally, we discuss some of the issues that this area should deal with. Above the Clouds: A Brief Survey

Document worth reading: “Prediction-Based Decisions and Fairness: A Catalogue of Choices, Assumptions, and Definitions”

23 Saturday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

A recent flurry of research activity has attempted to quantitatively define ‘fairness’ for decisions based on statistical and machine learning (ML) predictions. The rapid growth of this new field has led to wildly inconsistent terminology and notation, presenting a serious challenge for cataloguing and comparing definitions. This paper attempts to bring much-needed order. First, we explicate the various choices and assumptions made—often implicitly—to justify the use of prediction-based decisions. Next, we show how such choices and assumptions can raise concerns about fairness and we present a notationally consistent catalogue of fairness definitions from the ML literature. In doing so, we offer a concise reference for thinking through the choices, assumptions, and fairness considerations of prediction-based decision systems. Prediction-Based Decisions and Fairness: A Catalogue of Choices, Assumptions, and Definitions

Document worth reading: “Deep Semantic Segmentation of Natural and Medical Images: A Review”

22 Friday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

The (medical) image semantic segmentation task consists of classifying each pixel of an image (or just several ones) into an instance, where each instance (or category) corresponding to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the main deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural improvements, data synthesis-based, loss function-based improvements, sequenced models, weakly supervised, and multi-task methods and further for each group we analyzed each variant of these groups and discuss limitations of the current approaches and future research directions for semantic image segmentation. Deep Semantic Segmentation of Natural and Medical Images: A Review

Document worth reading: “Lecture Notes: Temporal Point Processes and the Conditional Intensity Function”

21 Thursday May 2020

Posted by Michael Laux in Documents

≈ Leave a comment

These short lecture notes contain a not too technical introduction to point processes on the time line. The focus lies on defining these processes using the conditional intensity function. Furthermore, likelihood inference, methods of simulation and residual analysis for temporal point processes specified by a conditional intensity function are considered. Lecture Notes: Temporal Point Processes and the Conditional Intensity Function

← Older posts

Blogs by Category

  • arXiv
  • arXiv Papers
  • Blogs
  • Books
  • Causality
  • Distilled News
  • Documents
  • Ethics
  • Magister Dixit
  • Personal Productivity
  • Python Packages
  • R Packages
  • Uncategorized
  • What is …
  • WordPress

Blogs by Month

Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Follow AnalytiXon

Powered by WordPress.com.

 

Loading Comments...