SYNAPSE google
Receiving timely and relevant security information is crucial for maintaining a high-security level on an IT infrastructure. This information can be extracted from Open Source Intelligence published daily by users, security organisations, and researchers. In particular, Twitter has become an information hub for obtaining cutting-edge information about many subjects, including cybersecurity. This work proposes SYNAPSE, a Twitter-based streaming threat monitor that generates a continuously updated summary of the threat landscape related to a monitored infrastructure. Its tweet-processing pipeline is composed of filtering, feature extraction, binary classification, an innovative clustering strategy, and generation of Indicators of Compromise (IoCs). A quantitative evaluation considering all tweets from 80 accounts over more than 8 months (over 195.000 tweets), shows that our approach timely and successfully finds the majority of security-related tweets concerning an example IT infrastructure (true positive rate above 90%), incorrectly selects a small number of tweets as relevant (false positive rate under 10%), and summarises the results to very few IoCs per day. A qualitative evaluation of the IoCs generated by SYNAPSE demonstrates their relevance (based on the CVSS score and the availability of patches or exploits), and timeliness (based on threat disclosure dates from NVD). …

Compressive Affine Phase Retrieval via Lifting (CAPRL) google
In this paper, we consider compressive/sparse affine phase retrieval proposed in [B. Gao B, Q. Sun, Y. Wang and Z. Xu, Adv. in Appl. Math., 93(2018), 121-141]. By the lift technique, and heuristic nuclear norm for convex relaxation of rank and $\ell$ one norm convex relaxation of sparsity, we establish convex models , which are called compressive affine phase retrieval via lifting (CAPRL). In order to compute these models, we develop inertial proximal ADMM for multiple separated operators and also give out its convergence analysis. Our numerical experiments via proposed algorithm show that sparse signal can be exactly and stably recovered via CAPRL. We also list some other applications of our proposed algorithm. …

Adversarial Gain google
Adversarial examples can be defined as inputs to a model which induce a mistake – where the model output is different than that of an oracle, perhaps in surprising or malicious ways. Original models of adversarial attacks are primarily studied in the context of classification and computer vision tasks. While several attacks have been proposed in natural language processing (NLP) settings, they often vary in defining the parameters of an attack and what a successful attack would look like. The goal of this work is to propose a unifying model of adversarial examples suitable for NLP tasks in both generative and classification settings. We define the notion of adversarial gain: based in control theory, it is a measure of the change in the output of a system relative to the perturbation of the input (caused by the so-called adversary) presented to the learner. This definition, as we show, can be used under different feature spaces and distance conditions to determine attack or defense effectiveness across different intuitive manifolds. This notion of adversarial gain not only provides a useful way for evaluating adversaries and defenses, but can act as a building block for future work in robustness under adversaries due to its rooted nature in stability and manifold theory. …

Complete Representations GAN (CR-GAN) google
Generating multi-view images from a single-view input is an essential yet challenging problem. It has broad applications in vision, graphics, and robotics. Our study indicates that the widely-used generative adversarial network (GAN) may learn ‘incomplete’ representations due to the single-pathway framework: an encoder-decoder network followed by a discriminator network. We propose CR-GAN to address this problem. In addition to the single reconstruction path, we introduce a generation sideway to maintain the completeness of the learned embedding space. The two learning pathways collaborate and compete in a parameter-sharing manner, yielding considerably improved generalization ability to ‘unseen’ dataset. More importantly, the two-pathway framework makes it possible to combine both labeled and unlabeled data for self-supervised learning, which further enriches the embedding space for realistic generations. The experimental results prove that CR-GAN significantly outperforms state-of-the-art methods, especially when generating from ‘unseen’ inputs in wild conditions. …