Latent Semantic Imputation (LSI) google
We present a novel method named Latent Semantic Imputation (LSI) to transfer external knowledge into semantic space for enhancing word embedding. The method integrates graph theory to extract the latent manifold structure of the entities in the affinity space and leverages non-negative least squares with standard simplex constraints and power iteration method to derive spectral embeddings. It provides an effective and efficient approach to combining entity representations defined in different Euclidean spaces. Specifically, our approach generates and imputes reliable embedding vectors for low-frequency words in the semantic space and benefits downstream language tasks that depend on word embedding. We conduct comprehensive experiments on a carefully designed classification problem and language modeling and demonstrate the superiority of the enhanced embedding via LSI over several well-known benchmark embeddings. We also confirm the consistency of the results under different parameter settings of our method. …

Gandhi-Washington Method (GWM) google
Many investigations in empirical software engineering look at sequences of data resulting from development or management processes. In this paper, we propose an analytical approach called the Gandhi-Washington Method (GWM) to investigate the impact of recurring events in software projects. GWM takes an encoding of events and activities provided by a software analyst as input. It uses regular expressions to automatically condense and summarize information and infer treatments. Relating the treatments to the outcome through statistical tests, treatment-outcome constructs are automatically mined from the data. The output of GWM is a set of treatment-outcome constructs. Each treatment in the set of mined constructs is significantly different from the other treatments considering the impact on the outcome and/or is structurally different from other treatments considering the sequence of events. We describe GWM and classes of problems to which GWM can be applied. We demonstrate the applicability of this method for empirical studies on sequences of file editing, code ownership, and release cycle time. …

Discriminative Convolutional Analysis Dictionary Learning (DCADL) google
Discriminative Dictionary Learning (DL) methods have been widely advocated for image classification problems. To further sharpen their discriminative capabilities, most state-of-the-art DL methods have additional constraints included in the learning stages. These various constraints, however, lead to additional computational complexity. We hence propose an efficient Discriminative Convolutional Analysis Dictionary Learning (DCADL) method, as a lower cost Discriminative DL framework, to both characterize the image structures and refine the interclass structure representations. The proposed DCADL jointly learns a convolutional analysis dictionary and a universal classifier, while greatly reducing the time complexity in both training and testing phases, and achieving a competitive accuracy, thus demonstrating great performance in many experiments with standard databases. …

Model Reference Adaptive Controller (MRAC) google
In this paper, we present a hybrid direct-indirect model reference adaptive controller (MRAC), to address a class of problems with matched and unmatched uncertainties. In the proposed architecture, the unmatched uncertainty is estimated online through a companion observer model. Upon convergence of the observer, the unmatched uncertainty estimate is remodeled into a state dependent linear form to augment the nominal system dynamics. Meanwhile, a direct adaptive controller designed for a switching system cancels the effect of matched uncertainty in the system and achieves reference model tracking. We demonstrate that the proposed hybrid controller can handle a broad class of nonlinear systems with both matched and unmatched uncertainties …