SocialGCN google
Collaborative Filtering (CF) is one of the most successful approaches for recommender systems. With the emergence of online social networks, social recommendation has become a popular research direction. Most of these social recommendation models utilized each user’s local neighbors’ preferences to alleviate the data sparsity issue in CF. However, they only considered the local neighbors of each user and neglected the process that users’ preferences are influenced as information diffuses in the social network. Recently, Graph Convolutional Networks~(GCN) have shown promising results by modeling the information diffusion process in graphs that leverage both graph structure and node feature information. To this end, in this paper, we propose an effective graph convolutional neural network based model for social recommendation. Based on a classical CF model, the key idea of our proposed model is that we borrow the strengths of GCNs to capture how users’ preferences are influenced by the social diffusion process in social networks. The diffusion of users’ preferences is built on a layer-wise diffusion manner, with the initial user embedding as a function of the current user’s features and a free base user latent vector that is not contained in the user feature. Similarly, each item’s latent vector is also a combination of the item’s free latent vector, as well as its feature representation. Furthermore, we show that our proposed model is flexible when user and item features are not available. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model. …

SubGram google
Skip-gram (word2vec) is a recent method for creating vector representations of words (‘distributed word representations’) using a neural network. The representation gained popularity in various areas of natural language processing, because it seems to capture syntactic and semantic information about words without any explicit supervision in this respect. We propose SubGram, a refinement of the Skip-gram model to consider also the word structure during the training process, achieving large gains on the Skip-gram original test set. …

Incremental Cascade Regression (ICR) google
Traditional face alignment based on machine learning usually tracks the localizations of facial landmarks employing a static model trained offline where all of the training data is available in advance. When new training samples arrive, the static model must be retrained from scratch, which is excessively time-consuming and memory-consuming. In many real-time applications, the training data is obtained one by one or batch by batch. It results in that the static model limits its performance on sequential images with extensive variations. Therefore, the most critical and challenging aspect in this field is dynamically updating the tracker’s models to enhance predictive and generalization capabilities continuously. In order to address this question, we develop a fast and accurate online learning algorithm for face alignment. Particularly, we incorporate on-line sequential extreme learning machine into a parallel cascaded regression framework, coined incremental cascade regression (ICR). To the best of our knowledge, this is the first incremental cascaded framework with the non-linear regressor. One main advantage of ICR is that the tracker model can be fast updated in an incremental way without the entire retraining process when a new input is incoming. Experimental results demonstrate that the proposed ICR is more accurate and efficient on still or sequential images compared with the recent state-of-the-art cascade approaches. Furthermore, the incremental learning proposed in this paper can update the trained model in real time. …

Custodes google
We present Custodes: a new approach to solving the complex issue of preventing ‘p-hacking’ in scientific studies. The novel protocol provides a concrete and publicly auditable method for controlling false-discoveries and eliminates any potential for data dredging on the part of researchers during data-analysis phase. Custodes provides provable guarantees on the validity of each hypotheses test performed on a dataset by using cryptographic techniques to certify outcomes of statistical tests. Custodes achieves this using a decentralized authority and a tamper-proof ledger which enables the auditing of the hypothesis testing process. We present a construction of Custodes which we implement and evaluate using both real and synthetic datasets on common statistical tests, demonstrating the effectiveness and practicality of Custodes in the real world. …