Staleness
Most distributed machine learning (ML) systems store a copy of the model parameters locally on each machine to minimize network communication. In practice, in order to reduce synchronization waiting time, these copies of the model are not necessarily updated in lock-steps, and can become stale. Despite much development in large-scale ML, the effect of staleness on the learning efficiency is inconclusive, mainly because it is challenging to control or monitor the staleness in complex distributed environments. In this work, we study the convergence behaviors of a wide array of ML models and algorithms under delayed updates. Our extensive experiments reveal the rich diversity of the effects of staleness on the convergence of ML algorithms, and offer insights into seemingly contradictory reports in the literature. The empirical findings also inspire a new convergence analysis of SGD in non-convex optimization under staleness, matching the best known convergence rate. …
Distributional Reinforcement Learning (Distributional RL)
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman’s equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.
A Comparative Analysis of Expected and Distributional Reinforcement Learning …
Positional Cartesian Genetic Programming (Positional CGP)
Cartesian Genetic Programming (CGP) has many modifications across a variety of implementations, such as recursive connections and node weights. Alternative genetic operators have also been proposed for CGP, but have not been fully studied. In this work, we present a new form of genetic programming based on a floating point representation. In this new form of CGP, called Positional CGP, node positions are evolved. This allows for the evaluation of many different genetic operators while allowing for previous CGP improvements like recurrency. Using nine benchmark problems from three different classes, we evaluate the optimal parameters for CGP and PCGP, including novel genetic operators. …
ETNLP
In this paper, we introduce a comprehensive toolkit, ETNLP, which can evaluate, extract, and visualize multiple sets of pre-trained word embeddings. First, for evaluation, ETNLP analyses the quality of pre-trained embeddings based on an input word analogy list. Second, for extraction ETNLP provides a subset of the embeddings to be used in the downstream NLP tasks. Finally, ETNLP has a visualization module which is for exploring the embedded words interactively. We demonstrate the effectiveness of ETNLP on our pre-trained word embeddings in Vietnamese. Specifically, we create a large Vietnamese word analogy list to evaluate the embeddings. We then utilize the pre-trained embeddings for the name entity recognition (NER) task in Vietnamese and achieve the new state-of-the-art results on a benchmark dataset for the NER task. A video demonstration of ETNLP is available at https://…/317599106. The source code and data are available at https: //github.com/vietnlp/etnlp. …
If you did not already know
09 Tuesday Feb 2021
Posted What is ...
in