MAgent google
We introduce MAgent, a platform to support research and development of many-agent reinforcement learning. Unlike previous research platforms on single or multi-agent reinforcement learning, MAgent focuses on supporting the tasks and the applications that require hundreds to millions of agents. Within the interactions among a population of agents, it enables not only the study of learning algorithms for agents’ optimal polices, but more importantly, the observation and understanding of individual agent’s behaviors and social phenomena emerging from the AI society, including communication languages, leaderships, altruism. MAgent is highly scalable and can host up to one million agents on a single GPU server. MAgent also provides flexible configurations for AI researchers to design their customized environments and agents. In this demo, we present three environments designed on MAgent and show emerged collective intelligence by learning from scratch. …

DeepRank google
This paper concerns a deep learning approach to relevance ranking in information retrieval (IR). Existing deep IR models such as DSSM and CDSSM directly apply neural networks to generate ranking scores, without explicit understandings of the relevance. According to the human judgement process, a relevance label is generated by the following three steps: 1) relevant locations are detected, 2) local relevances are determined, 3) local relevances are aggregated to output the relevance label. In this paper we propose a new deep learning architecture, namely DeepRank, to simulate the above human judgment process. Firstly, a detection strategy is designed to extract the relevant contexts. Then, a measure network is applied to determine the local relevances by utilizing a convolutional neural network (CNN) or two-dimensional gated recurrent units (2D-GRU). Finally, an aggregation network with sequential integration and term gating mechanism is used to produce a global relevance score. DeepRank well captures important IR characteristics, including exact/semantic matching signals, proximity heuristics, query term importance, and diverse relevance requirement. Experiments on both benchmark LETOR dataset and a large scale clickthrough data show that DeepRank can significantly outperform learning to ranking methods, and existing deep learning methods. …

Local Binary Pattern Network (LBPNet) google
Memory and computation efficient deep learning architec- tures are crucial to continued proliferation of machine learning capabili- ties to new platforms and systems. Binarization of operations in convo- lutional neural networks has shown promising results in reducing model size and computing efficiency. In this paper, we tackle the problem us- ing a strategy different from the existing literature by proposing local binary pattern networks or LBPNet, that is able to learn and perform binary operations in an end-to-end fashion. LBPNet1 uses local binary comparisons and random projection in place of conventional convolu- tion (or approximation of convolution) operations. These operations can be implemented efficiently on different platforms including direct hard- ware implementation. We applied LBPNet and its variants on standard benchmarks. The results are promising across benchmarks while provid- ing an important means to improve memory and speed efficiency that is particularly suited for small footprint devices and hardware accelerators. …

Clustering With Robust Autocuts and Depth (CRAD) google
We develop a new density-based clustering algorithm named CRAD which is based on a new neighbor searching function with a robust data depth as the dissimilarity measure. Our experiments prove that the new CRAD is highly competitive at detecting clusters with varying densities, compared with the existing algorithms such as DBSCAN, OPTICS and DBCA. Furthermore, a new effective parameter selection procedure is developed to select the optimal underlying parameter in the real-world clustering, when the ground truth is unknown. Lastly, we suggest a new clustering framework that extends CRAD from spatial data clustering to time series clustering without a-priori knowledge of the true number of clusters. The performance of CRAD is evaluated through extensive experimental studies. …