Domain Invariant Variational Autoencoder (DIVA) google
We consider the problem of domain generalization, namely, how to learn representations given data from a set of domains that generalize to data from a previously unseen domain. We propose the Domain Invariant Variational Autoencoder (DIVA), a generative model that tackles this problem by learning three independent latent subspaces, one for the domain, one for the class, and one for any residual variations. We highlight that due to the generative nature of our model we can also incorporate unlabeled data from known or previously unseen domains. To the best of our knowledge this has not been done before in a domain generalization setting. This property is highly desirable in fields like medical imaging where labeled data is scarce. We experimentally evaluate our model on the rotated MNIST benchmark and a malaria cell images dataset where we show that (i) the learned subspaces are indeed complementary to each other, (ii) we improve upon recent works on this task and (iii) incorporating unlabelled data can boost the performance even further. …

Vanlearning google
Although we have tons of machine learning tools to analyze data, most of them require users have some programming backgrounds. Here we introduce a SaaS application which allows users analyze their data without any coding and even without any knowledge of machine learning. Users can upload, train, predict and download their data by simply clicks their mouses. Our system uses data pre-processor and validator to relieve the computational cost of our server. The simple architecture of Vanlearning helps developers can easily maintain and extend it. …

Self-Attentive BiLSTM-CRF with Flair Embedding (SCIFI) google
Causality extraction from natural language texts is a challenging open problem in artificial intelligence. Existing methods utilize patterns, constraints, and machine learning techniques to extract causality, heavily depend on domain knowledge and require considerable human efforts and time on feature engineering. In this paper, we formulate causality extraction as a sequence tagging problem based on a novel causality tagging scheme. On this basis, we propose a neural causality extractor with BiLSTM-CRF model as the backbone, named SCIFI (Self-Attentive BiLSTM-CRF with Flair Embeddings), which can directly extract Cause and Effect, without extracting candidate causal pairs and identifying their relations separately. To tackle the problem of data insufficiency, we transfer the contextual string embeddings, also known as Flair embeddings, which trained on a large corpus into our task. Besides, to improve the performance of causality extraction, we introduce the multi-head self-attention mechanism into SCIFI to learn the dependencies between causal words. We evaluate our method on a public dataset, and experimental results demonstrate that our method achieves significant and consistent improvement as compared to other baselines. …

Proximity Forest google
Research into the classification of time series has made enormous progress in the last decade. The UCR time series archive has played a significant role in challenging and guiding the development of new learners for time series classification. The largest dataset in the UCR archive holds 10 thousand time series only; which may explain why the primary research focus has been in creating algorithms that have high accuracy on relatively small datasets. This paper introduces Proximity Forest, an algorithm that learns accurate models from datasets with millions of time series, and classifies a time series in milliseconds. The models are ensembles of highly randomized Proximity Trees. Whereas conventional decision trees branch on attribute values (and usually perform poorly on time series), Proximity Trees branch on the proximity of time series to one exemplar time series or another; allowing us to leverage the decades of work into developing relevant measures for time series. Proximity Forest gains both efficiency and accuracy by stochastic selection of both exemplars and similarity measures. Our work is motivated by recent time series applications that provide orders of magnitude more time series than the UCR benchmarks. Our experiments demonstrate that Proximity Forest is highly competitive on the UCR archive: it ranks among the most accurate classifiers while being significantly faster. We demonstrate on a 1M time series Earth observation dataset that Proximity Forest retains this accuracy on datasets that are many orders of magnitude greater than those in the UCR repository, while learning its models at least 100,000 times faster than current state of the art models Elastic Ensemble and COTE. …

Advertisements