ROI regularization (ROIreg) google
We propose ROI regularization (ROIreg) as a semi-supervised learning method for image classification. ROIreg focuses on the maximum probability of a posterior probability distribution g(x) obtained when inputting an unlabeled data sample x into a convolutional neural network (CNN). ROIreg divides the pixel set of x into multiple blocks and evaluates, for each block, its contribution to the maximum probability. A masked data sample x_ROI is generated by replacing blocks with relatively small degrees of contribution with random images. Then, ROIreg trains CNN so that g(x_ROI ) does not change as much as possible from g(x). Therefore, ROIreg can be said to refine the classification ability of CNN more. On the other hand, Virtual Adverserial Training (VAT), which is an excellent semi-supervised learning method, generates data sample x_VAT by perturbing x in the direction in which g(x) changes most. Then, VAT trains CNN so that g(x_VAT ) does not change from g(x) as much as possible. Therefore, VAT can be said to be a method to improve CNN’s weakness. Thus, ROIreg and VAT have complementary training effects. In fact, the combination of VAT and ROIreg improves the results obtained when using VAT or ROIreg alone. This combination also improves the state-of-the-art on ‘SVHN with and without data augmentation’ and ‘CIFAR-10 without data augmentation’. We also propose a method called ROI augmentation (ROIaug) as a method to apply ROIreg to data augmentation in supervised learning. However, the evaluation function used there is different from the standard cross-entropy. ROIaug improves the performance of supervised learning for both SVHN and CIFAR-10. Finally, we investigate the performance degradation of VAT and VAT+ROIreg when data samples not belonging to classification classes are included in unlabeled data. …

FinBrain google
Artificial intelligence (AI) is the core technology of technological revolution and industrial transformation. As one of the new intelligent needs in the AI 2.0 era, financial intelligence has elicited much attention from the academia and industry. In our current dynamic capital market, financial intelligence demonstrates a fast and accurate machine learning capability to handle complex data and has gradually acquired the potential to become a ‘financial brain’. In this work, we survey existing studies on financial intelligence. First, we describe the concept of financial intelligence and elaborate on its position in the financial technology field. Second, we introduce the development of financial intelligence and review state-of-the-art techniques in wealth management, risk management, financial security, financial consulting, and blockchain. Finally, we propose a research framework called FinBrain and summarize four open issues, namely, explainable financial agents and causality, perception and prediction under uncertainty, risk-sensitive and robust decision making, and multi-agent game and mechanism design. We believe that these research directions can lay the foundation for the development of AI 2.0 in the finance field. …

Synthetic Segmentation Network (SynSeg-Net) google
A key limitation of deep convolutional neural networks (DCNN) based image segmentation methods is the lack of generalizability. Manually traced training images are typically required when segmenting organs in a new imaging modality or from distinct disease cohort. The manual efforts can be alleviated if the manually traced images in one imaging modality (e.g., MRI) are able to train a segmentation network for another imaging modality (e.g., CT). In this paper, we propose an end-to-end synthetic segmentation network (SynSeg-Net) to train a segmentation network for a target imaging modality without having manual labels. SynSeg-Net is trained by using (1) unpaired intensity images from source and target modalities, and (2) manual labels only from source modality. SynSeg-Net is enabled by the recent advances of cycle generative adversarial networks (CycleGAN) and DCNN. We evaluate the performance of the SynSeg-Net on two experiments: (1) MRI to CT splenomegaly synthetic segmentation for abdominal images, and (2) CT to MRI total intracranial volume synthetic segmentation (TICV) for brain images. The proposed end-to-end approach achieved superior performance to two stage methods. Moreover, the SynSeg-Net achieved comparable performance to the traditional segmentation network using target modality labels in certain scenarios. The source code of SynSeg-Net is publicly available (https://…/SynSeg-Net ). …

Bidirectional Encoder Representations from Transformers for sequential Recommendation (BERT4Rec) google
Modeling users’ dynamic and evolving preferences from their historical behaviors is challenging and crucial for recommendation systems. Previous methods employ sequential neural networks (e.g., Recurrent Neural Network) to encode users’ historical interactions from left to right into hidden representations for making recommendations. Although these methods achieve satisfactory results, they often assume a rigidly ordered sequence which is not always practical. We argue that such left-to-right unidirectional architectures restrict the power of the historical sequence representations. For this purpose, we introduce a Bidirectional Encoder Representations from Transformers for sequential Recommendation (BERT4Rec). However, jointly conditioning on both left and right context in deep bidirectional model would make the training become trivial since each item can indirectly “see the target item”. To address this problem, we train the bidirectional model using the Cloze task, predicting the masked items in the sequence by jointly conditioning on their left and right context. Comparing with predicting the next item at each position in a sequence, the Cloze task can produce more samples to train a more powerful bidirectional model. Extensive experiments on four benchmark datasets show that our model outperforms various state-of-the-art sequential models consistently. …