**Latent Truth Discovery (LTD)**

Latent truth discovery, LTD for short, refers to the problem of aggregating multiple claims from various sources in order to estimate the plausibility of statements about entities. In the absence of a ground truth, this problem is highly challenging, when some sources provide conflicting claims and others no claims at all. … **DALEX**

Predictive modeling is invaded by elastic, yet complex methods such as neural networks or ensembles (model stacking, boosting or bagging). Such methods are usually described by a large number of parameters or hyper parameters – a price that one needs to pay for elasticity. The very number of parameters makes models hard to understand. This paper describes a consistent collection of explainers for predictive models, a.k.a. black boxes. Each explainer is a technique for exploration of a black box model. Presented approaches are model-agnostic, what means that they extract useful information from any predictive method despite its internal structure. Each explainer is linked with a specific aspect of a model. Some are useful in decomposing predictions, some serve better in understanding performance, while others are useful in understanding importance and conditional responses of a particular variable. Every explainer presented in this paper works for a single model or for a collection of models. In the latter case, models can be compared against each other. Such comparison helps to find strengths and weaknesses of different approaches and gives additional possibilities for model validation. Presented explainers are implemented in the DALEX package for R. They are based on a uniform standardized grammar of model exploration which may be easily extended. The current implementation supports the most popular frameworks for classification and regression. … **Reinforcement Learning and Bayesian Optimization (ReinBo)**

Machine learning pipeline potentially consists of several stages of operations like data preprocessing, feature engineering and machine learning model training. Each operation has a set of hyper-parameters, which can become irrelevant for the pipeline when the operation is not selected. This gives rise to a hierarchical conditional hyper-parameter space. To optimize this mixed continuous and discrete conditional hierarchical hyper-parameter space, we propose an efficient pipeline search and configuration algorithm which combines the power of Reinforcement Learning and Bayesian Optimization. Empirical results show that our method performs favorably compared to state of the art methods like Auto-sklearn , TPOT, Tree Parzen Window, and Random Search. … **Network Flow Motif**

Many real-world phenomena are best represented as interaction networks with dynamic structures (e.g., transaction networks, social networks, traffic networks). Interaction networks capture flow of data which is transferred between their vertices along a timeline. Analyzing such networks is crucial toward comprehending processes in them. A typical analysis task is the finding of motifs, which are small subgraph patterns that repeat themselves in the network. In this paper, we introduce network flow motifs, a novel type of motifs that model significant flow transfer among a set of vertices within a constrained time window. We design an algorithm for identifying flow motif instances in a large graph. Our algorithm can be easily adapted to find the top-k instances of maximal flow. In addition, we design a dynamic programming module that finds the instance with the maximum flow. We evaluate the performance of the algorithm on three real datasets and identify flow motifs which are significant for these graphs. Our results show that our algorithm is scalable and that the real networks indeed include interesting motifs, which appear much more frequently than in randomly generated networks having similar characteristics. …

# If you did not already know

**13**
*Wednesday*
Apr 2022

Posted What is ...

in