Path Capsule Network (PathCapsNet) google
Capsule network (CapsNet) was introduced as an enhancement over convolutional neural networks, supplementing the latter’s invariance properties with equivariance through pose estimation. CapsNet achieved a very decent performance with a shallow architecture and a significant reduction in parameters count. However, the width of the first layer in CapsNet is still contributing to a significant number of its parameters and the shallowness may be limiting the representational power of the capsules. To address these limitations, we introduce Path Capsule Network (PathCapsNet), a deep parallel multi-path version of CapsNet. We show that a judicious coordination of depth, max-pooling, regularization by DropCircuit and a new fan-in routing by agreement technique can achieve better or comparable results to CapsNet, while further reducing the parameter count significantly. …

Non-negative Matrix Factorization Expectation-Maximization (NMF-EM) google
Mixture models are among the most popular tools for model based clustering. However, when the dimension and the number of clusters is large, the estimation as well as the interpretation of the clusters become challenging. We propose a reduced-dimension mixture model, where the K components parameters are combinations of words from a small dictionary – say H words with H«K . Including a Nonnegative Matrix Factorization (NMF) in the EM algorithm allows to simultaneously estimate the dictionary and the parameters of the mixture. We propose the acronym NMF-EM for this algorithm. This original approach is motivated by passengers clustering from ticketing data: we apply NMF-EM to ticketing data from two Transdev public transport networks. In this case, the words are easily interpreted as typical slots in a timetable. …

Pixel-Anchor google
Recently, semantic segmentation and general object detection frameworks have been widely adopted by scene text detecting tasks. However, both of them alone have obvious shortcomings in practice. In this paper, we propose a novel end-to-end trainable deep neural network framework, named Pixel-Anchor, which combines semantic segmentation and SSD in one network by feature sharing and anchor-level attention mechanism to detect oriented scene text. To deal with scene text which has large variances in size and aspect ratio, we combine FPN and ASPP operation as our encoder-decoder structure in the semantic segmentation part, and propose a novel Adaptive Predictor Layer in the SSD. Pixel-Anchor detects scene text in a single network forward pass, no complex post-processing other than an efficient fusion Non-Maximum Suppression is involved. We have benchmarked the proposed Pixel-Anchor on the public datasets. Pixel-Anchor outperforms the competing methods in terms of text localization accuracy and run speed, more specifically, on the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.8768 at 10 FPS for 960 x 1728 resolution images. …

Heterogeneous Deep Diffusion (HDD) google
There are many real-world knowledge based networked systems with multi-type interacting entities that can be regarded as heterogeneous networks including human connections and biological evolutions. One of the main issues in such networks is to predict information diffusion such as shape, growth and size of social events and evolutions in the future. While there exist a variety of works on this topic mainly using a threshold-based approach, they suffer from the local viewpoint on the network and sensitivity to the threshold parameters. In this paper, information diffusion is considered through a latent representation learning of the heterogeneous networks to encode in a deep learning model. To this end, we propose a novel meta-path representation learning approach, Heterogeneous Deep Diffusion(HDD), to exploit meta-paths as main entities in networks. At first, the functional heterogeneous structures of the network are learned by a continuous latent representation through traversing meta-paths with the aim of global end-to-end viewpoint. Then, the well-known deep learning architectures are employed on our generated features to predict diffusion processes in the network. The proposed approach enables us to apply it on different information diffusion tasks such as topic diffusion and cascade prediction. We demonstrate the proposed approach on benchmark network datasets through the well-known evaluation measures. The experimental results show that our approach outperforms the earlier state-of-the-art methods. …