Adaptively Scaled Recurrent Neural Network (ASRNN) google
Recent advancements in recurrent neural network (RNN) research have demonstrated the superiority of utilizing multiscale structures in learning temporal representations of time series. Currently, most of multiscale RNNs use fixed scales, which do not comply with the nature of dynamical temporal patterns among sequences. In this paper, we propose Adaptively Scaled Recurrent Neural Networks (ASRNN), a simple but efficient way to handle this problem. Instead of using predefined scales, ASRNNs are able to learn and adjust scales based on different temporal contexts, making them more flexible in modeling multiscale patterns. Compared with other multiscale RNNs, ASRNNs are bestowed upon dynamical scaling capabilities with much simpler structures, and are easy to be integrated with various RNN cells. The experiments on multiple sequence modeling tasks indicate ASRNNs can efficiently adapt scales based on different sequence contexts and yield better performances than baselines without dynamical scaling abilities. …

Transformative Knowledge Discovery google
Big data analytics provides an interdisciplinary framework that is essential to support the current trend for solving real-world problems collaboratively. The progression of big data analytics framework must be clearly understood so that novel approaches can be developed to advance this state-of-the-art discipline. An ignorance of observing the progression of this fast-growing discipline may lead to duplications in research and waste of efforts. Its main companion field, machine learning, helps solve many big data analytics problems; therefore, it is also important to understand the progression of machine learning in the big data analytics framework. One of the current research efforts in big data analytics is the integration of deep learning and Bayesian optimization, which can help the automatic initialization and optimization of hyperparameters of deep learning and enhance the implementation of iterative algorithms in software. The hyperparameters include the weights used in deep learning, and the number of clusters in Bayesian mixture models that characterize data heterogeneity. The big data analytics research also requires computer systems and software that are capable of storing, retrieving, processing, and analyzing big data that are generally large, complex, heterogeneous, unstructured, unpredictable, and exposed to scalability problems. Therefore, it is appropriate to introduce a new research topic – transformative knowledge discovery – that provides a research ground to study and develop smart machine learning models and algorithms that are automatic, adaptive, and cognitive to address big data analytics problems and challenges. The new research domain will also create research opportunities to work on this interdisciplinary research space and develop solutions to support research in other disciplines that may not have expertise in the research area of big data analytics. For example, the research, such as detection and characterization of retinal diseases in medical sciences and the classification of highly interacting species in environmental sciences can benefit from the knowledge and expertise in big data analytics. …

Deep Graph Infomax (DGI) google
We present Deep Graph Infomax (DGI), a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs—both derived using established graph convolutional network architectures. The learnt patch representations summarize subgraphs centered around nodes of interest, and can thus be reused for downstream node-wise learning tasks. In contrast to most prior approaches to graph representation learning, DGI does not rely on random walks, and is readily applicable to both transductive and inductive learning setups. We demonstrate competitive performance on a variety of node classification benchmarks, which at times even exceeds the performance of supervised learning. …

Manifold Regularized Generative Adversarial Network (MR-GAN) google
Despite the growing interest in generative adversarial networks (GANs), training GANs remains a challenging problem, both from a theoretical and a practical standpoint. To address this challenge, in this paper, we propose a novel way to exploit the unique geometry of the real data, especially the manifold information. More specifically, we design a method to regularize GAN training by adding an additional regularization term referred to as manifold regularizer. The manifold regularizer forces the generator to respect the unique geometry of the real data manifold and generate high quality data. Furthermore, we theoretically prove that the addition of this regularization term in any class of GANs including DCGAN and Wasserstein GAN leads to improved performance in terms of generalization, existence of equilibrium, and stability. Preliminary experiments show that the proposed manifold regularization helps in avoiding mode collapse and leads to stable training. …