Graph Matching based Partial Label Learning (GM-PLL) google
Partial Label Learning (PLL) aims to learn from the data where each training example is associated with a set of candidate labels, among which only one is correct. The key to deal with such problem is to disambiguate the candidate label sets and obtain the correct assignments between instances and their candidate labels. In this paper, we interpret such assignments as instance-to-label matchings, and reformulate the task of PLL as a matching selection problem. To model such problem, we propose a novel Graph Matching based Partial Label Learning (GM-PLL) framework, where Graph Matching (GM) scheme is incorporated owing to its excellent capability of exploiting the instance and label relationship. Meanwhile, since conventional one-to-one GM algorithm does not satisfy the constraint of PLL problem that multiple instances may correspond to the same label, we extend a traditional one-to-one probabilistic matching algorithm to the many-to-one constraint, and make the proposed framework accommodate to the PLL problem. Moreover, we also propose a relaxed matching prediction model, which can improve the prediction accuracy via GM strategy. Extensive experiments on both artificial and real-world data sets demonstrate that the proposed method can achieve superior or comparable performance against the state-of-the-art methods. …

Value Propagation Network (VProp) google
We present Value Propagation (VProp), a parameter-efficient differentiable planning module built on Value Iteration which can successfully be trained using reinforcement learning to solve unseen tasks, has the capability to generalize to larger map sizes, and can learn to navigate in dynamic environments. Furthermore, we show that the module enables learning to plan when the environment also includes stochastic elements, providing a cost-efficient learning system to build low-level size-invariant planners for a variety of interactive navigation problems. We evaluate on static and dynamic configurations of MazeBase grid-worlds, with randomly generated environments of several different sizes, and on a StarCraft navigation scenario, with more complex dynamics, and pixels as input. …

Topic-Based Convolutional Neural Network (TB-CNN) google
With the explosive development of mobile Internet, short text has been applied extensively. The difference between classifying short text and long documents is that short text is of shortness and sparsity. Thus, it is challenging to deal with short text classification owing to its less semantic information. In this paper, we propose a novel topic-based convolutional neural network (TB-CNN) based on Latent Dirichlet Allocation (LDA) model and convolutional neural network. Comparing to traditional CNN methods, TB-CNN generates topic words with LDA model to reduce the sparseness and combines the embedding vectors of topic words and input words to extend feature space of short text. The validation results on IMDB movie review dataset show the improvement and effectiveness of TB-CNN. …

Moment Alignment Network (MAN) google
This research strives for natural language moment retrieval in long, untrimmed video streams. The problem nevertheless is not trivial especially when a video contains multiple moments of interests and the language describes complex temporal dependencies, which often happens in real scenarios. We identify two crucial challenges: semantic misalignment and structural misalignment. However, existing approaches treat different moments separately and do not explicitly model complex moment-wise temporal relations. In this paper, we present Moment Alignment Network (MAN), a novel framework that unifies the candidate moment encoding and temporal structural reasoning in a single-shot feed-forward network. MAN naturally assigns candidate moment representations aligned with language semantics over different temporal locations and scales. Most importantly, we propose to explicitly model moment-wise temporal relations as a structured graph and devise an iterative graph adjustment network to jointly learn the best structure in an end-to-end manner. We evaluate the proposed approach on two challenging public benchmarks Charades-STA and DiDeMo, where our MAN significantly outperforms the state-of-the-art by a large margin. …