Cross-View Training (CVT) google
Unsupervised representation learning algorithms such as word2vec and ELMo improve the accuracy of many supervised NLP models, mainly because they can take advantage of large amounts of unlabeled text. However, the supervised models only learn from task-specific labeled data during the main training phase. We therefore propose Cross-View Training (CVT), a semi-supervised learning algorithm that improves the representations of a Bi-LSTM sentence encoder using a mix of labeled and unlabeled data. On labeled examples, standard supervised learning is used. On unlabeled examples, CVT teaches auxiliary prediction modules that see restricted views of the input (e.g., only part of a sentence) to match the predictions of the full model seeing the whole input. Since the auxiliary modules and the full model share intermediate representations, this in turn improves the full model. Moreover, we show that CVT is particularly effective when combined with multi-task learning. We evaluate CVT on five sequence tagging tasks, machine translation, and dependency parsing, achieving state-of-the-art results. …

GraphRNN google
Modeling and generating graphs is fundamental for studying networks in biology, engineering, and social sciences. However, modeling complex distributions over graphs and then efficiently sampling from these distributions is challenging due to the non-unique, high-dimensional nature of graphs and the complex, non-local dependencies that exist between edges in a given graph. Here we propose GraphRNN, a deep autoregressive model that addresses the above challenges and approximates any distribution of graphs with minimal assumptions about their structure. GraphRNN learns to generate graphs by training on a representative set of graphs and decomposes the graph generation process into a sequence of node and edge formations, conditioned on the graph structure generated so far. In order to quantitatively evaluate the performance of GraphRNN, we introduce a benchmark suite of datasets, baselines and novel evaluation metrics based on Maximum Mean Discrepancy, which measure distances between sets of graphs. Our experiments show that GraphRNN significantly outperforms all baselines, learning to generate diverse graphs that match the structural characteristics of a target set, while also scaling to graphs 50 times larger than previous deep models. …

Learning-to-Rank (LETOR) google
As one of the most popular techniques for solving the ranking problem in information retrieval, Learning-to-rank (LETOR) has received a lot of attention both in academia and industry due to its importance in a wide variety of data mining applications. However, most of existing LETOR approaches choose to learn a single global ranking function to handle all queries, and ignore the substantial differences that exist between queries. In this paper, we propose a domain generalization strategy to tackle this problem. We propose Query-Invariant Listwise Context Modeling (QILCM), a novel neural architecture which eliminates the detrimental influence of inter-query variability by learning \textit{query-invariant} latent representations, such that the ranking system could generalize better to unseen queries. We evaluate our techniques on benchmark datasets, demonstrating that QILCM outperforms previous state-of-the-art approaches by a substantial margin. …

Advertisements