• Home
  • About
  • Books
  • Courses
  • Documents
  • eBooks
  • Feeds
  • Images
  • Quotes
  • R Packages
  • What is …

AnalytiXon

~ Broaden your Horizon

Category Archives: Books

Books worth a look

Book Memo: “The AI Organization”

07 Saturday Sep 2019

Posted by Michael Laux in Books

≈ Leave a comment

Learn from Real Companies and Microsoft’s Journey How to Redefine Your Organization with AI
Much in the same way that software transformed business in the past two decades, AI is set to redefine organizations and entire industries. Just as every company is a software company today, every company will soon be an AI company. This practical guide explains how business and technical leaders can embrace this new breed of organization. Based on real customer experience, Microsoft’s David Carmona covers the journey necessary to become an AI Organization – from applying AI in your business today to the deep transformation that can empower your organization to redefine the industry. You’ll learn the core concepts of AI as they are applied to real business, explore and prioritize the most appropriate use cases for AI in your company, and drive the organizational and cultural change needed to transform your business with AI.

Book Memo: “Supervised and Unsupervised Learning for Data Science”

07 Saturday Sep 2019

Posted by Michael Laux in Books

≈ Leave a comment

This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018).

Book Memo: “Programming PyTorch for Deep Learning”

06 Friday Sep 2019

Posted by Michael Laux in Books

≈ Leave a comment

Creating and Deploying Deep Learning Applications
Deep learning is changing everything. This machine-learning method has already surpassed traditional computer vision techniques, and the same is happening with NLP. If you’re looking to bring deep learning into your domain, this practical book will bring you up to speed on key concepts using Facebook’s PyTorch framework.

Book Memo: “Nature-Inspired Computation in Data Mining and Machine Learning”

05 Thursday Sep 2019

Posted by Michael Laux in Books

≈ Leave a comment

This book reviews the latest developments in nature-inspired computation, with a focus on the cross-disciplinary applications in data mining and machine learning. Data mining, machine learning and nature-inspired computation are current hot research topics due to their importance in both theory and practical applications. Adopting an application-focused approach, each chapter introduces a specific topic, with detailed descriptions of relevant algorithms, extensive literature reviews and implementation details. Covering topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, feature selection, cybersecurity, learning algorithms over cloud, extreme learning machines, object categorization, particle swarm optimization, flower pollination and firefly algorithms, and neural networks, it also presents case studies and applications, including classifications of crisis-related tweets, extraction of named entities in the Tamil language, performance-based prediction of diseases, and healthcare services. This book is both a valuable a reference resource and a practical guide for students, researchers and professionals in computer science, data and management sciences, artificial intelligence and machine learning.

Book Memo: “Strengthening Deep Neural Networks”

04 Wednesday Sep 2019

Posted by Michael Laux in Books

≈ Leave a comment

Making AI Less Susceptible to Adversarial Trickery
As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately ‘fool’ them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs – the algorithms intrinsic to much of AI – are used daily to process image, audio, and video data.
• Delve into DNNs and discover how they could be tricked by adversarial input
• Investigate methods used to generate adversarial input capable of fooling DNNs
• Explore real-world scenarios and model the adversarial threat
• Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data
• Examine some ways in which AI might become better at mimicking human perception in years to come

Book Memo: “Machine Learning Pocket Reference”

29 Thursday Aug 2019

Posted by Michael Laux in Books

≈ Leave a comment

Working with Structured Data in Python
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.

Book Memo: “Agile Machine Learning”

22 Thursday Aug 2019

Posted by Michael Laux in Books

≈ Leave a comment

Effective Machine Learning Inspired by the Agile Manifesto
Build resilient applied machine learning teams that deliver better data products through adapting the guiding principles of the Agile Manifesto. Bringing together talented people to create a great applied machine learning team is no small feat. With developers and data scientists both contributing expertise in their respective fields, communication alone can be a challenge. Agile Machine Learning teaches you how to deliver superior data products through agile processes and to learn, by example, how to organize and manage a fast-paced team challenged with solving novel data problems at scale, in a production environment. The authors’ approach models the ground-breaking engineering principles described in the Agile Manifesto. The book provides further context, and contrasts the original principles with the requirements of systems that deliver a data product.

Book Memo: “Creativity in Intelligent Technologies and Data Science”

21 Wednesday Aug 2019

Posted by Michael Laux in Books

≈ Leave a comment

Third Conference, CIT&DS 2019, Volgograd, Russia, September 16-19, 2019, Proceedings
This two-volume set constitutes the proceedings of the Third Conference on Creativity in Intellectual Technologies and Data Science, CIT&DS 2019, held in Volgograd, Russia, in September 2019. The 67 full papers, 1 short paper and 3 keynote papers presented were carefully reviewed and selected from 231 submissions. The papers are organized in topical sections in the two volumes. Part I: cyber-physical systems and Big Data-driven world. Part II: artificial intelligence and deep learning technologies for creative tasks; intelligent technologies in social engineering.

Book Memo: “Centrality and Diversity in Search”

16 Friday Aug 2019

Posted by Michael Laux in Books

≈ Leave a comment

Roles in A.I., Machine Learning, Social Networks, and Pattern Recognition
The concepts of centrality and diversity are highly important in search algorithms, and play central roles in applications of artificial intelligence (AI), machine learning (ML), social networks, and pattern recognition. This work examines the significance of centrality and diversity in representation, regression, ranking, clustering, optimization, and classification. The text is designed to be accessible to a broad readership. Requiring only a basic background in undergraduate-level mathematics, the work is suitable for senior undergraduate and graduate students, as well as researchers working in machine learning, data mining, social networks, and pattern recognition.

Book Memo: “Machine Learning-based Natural Scene Recognition for Mobile Robot Localization in An Unknown Environment”

14 Wednesday Aug 2019

Posted by Michael Laux in Books

≈ Leave a comment

This book advances research on mobile robot localization in unknown environments by focusing on machine-learning-based natural scene recognition. The respective chapters highlight the latest developments in vision-based machine perception and machine learning research for localization applications, and cover such topics as: image-segmentation-based visual perceptual grouping for the efficient identification of objects composing unknown environments; classification-based rapid object recognition for the semantic analysis of natural scenes in unknown environments; the present understanding of the Prefrontal Cortex working memory mechanism and its biological processes for human-like localization; and the application of this present understanding to improve mobile robot localization. The book also features a perspective on bridging the gap between feature representations and decision-making using reinforcement learning, laying the groundwork for future advances in mobile robot navigation research.
← Older posts
Newer posts →

Blogs by Category

  • arXiv
  • arXiv Papers
  • Blogs
  • Books
  • Causality
  • Distilled News
  • Documents
  • Ethics
  • Magister Dixit
  • Personal Productivity
  • Python Packages
  • R Packages
  • Uncategorized
  • What is …
  • WordPress

Blogs by Month

Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Follow AnalytiXon

Powered by WordPress.com.

 

Loading Comments...