Scanning all new published packages on PyPI I know that the quality is often quite bad. I try to filter out the worst ones and list here the ones which might be worth a look, being followed or inspire you in some way.

There are various approaches to the problem of how one is supposed to conduct a statistical analysis. Different analyses can lead to contradictory conclusions in some problems so this is not a satisfactory state of affairs. It seems that all approaches make reference to the evidence in the data concerning questions of interest as a justification for the methodology employed. It is fair to say, however, that none of the most commonly used methodologies is absolutely explicit about how statistical evidence is to be characterized and measured. We will discuss the general problem of statistical reasoning and the development of a theory for this that is based on being precise about statistical evidence. This will be shown to lead to the resolution of a number of problems.The Measurement of Statistical Evidence as the Basis for Statistical Reasoning

“Depending on the learning curve, there are a few strategies we can employ to improve models
High Bias:
• Add new features
• Increase model complexity
• Reduce regularization
• Change model architecture
High Variance:
• Add more samples
• Add regularization
• Reduce number of features
• Decrease model complexity
• Add better features
• Change model architecture”Andrew Long ( 21.10.2018 )

MatrixRL Exploration in reinforcement learning (RL) suffers from the curse of dimensionality when the state-action space is large. A common practice is to parameterize the high-dimensional value and policy functions using given features. However existing methods either have no theoretical guarantee or suffer a regret that is exponential in the planning horizon $H$. In this paper, we propose an online RL algorithm, namely the MatrixRL, that leverages ideas from linear bandit to learn a low-dimensional representation of the probability transition model while carefully balancing the exploitation-exploration tradeoff. We show that MatrixRL achieves a regret bound ${O}\big(H^2d\log T\sqrt{T}\big)$ where $d$ is the number of features. MatrixRL has an equivalent kernelized version, which is able to work with an arbitrary kernel Hilbert space without using explicit features. In this case, the kernelized MatrixRL satisfies a regret bound ${O}\big(H^2\widetilde{d}\log T\sqrt{T}\big)$, where $\widetilde{d}$ is the effective dimension of the kernel space. To our best knowledge, for RL using features or kernels, our results are the first regret bounds that are near-optimal in time $T$ and dimension $d$ (or $\widetilde{d}$) and polynomial in the planning horizon $H$. …

Discrete InfoMax Codes (DIMCO) Learning compact discrete representations of data is itself a key task in addition to facilitating subsequent processing. It is also relevant to meta-learning since a latent representation shared across relevant tasks enables a model to adapt to new tasks quickly. In this paper, we present a method for learning a stochastic encoder that yields discrete p-way codes of length d by maximizing the mutual information between representations and labels. We show that previous loss functions for deep metric learning are approximations to this information-theoretic objective function. Our model, Discrete InfoMax Codes (DIMCO), learns to produce a short representation of data that can be used to classify classes with few labeled examples. Our analysis shows that using shorter codes reduces overfitting in the context of few-shot classification. Experiments show that DIMCO requires less memory (i.e., code length) for performance similar to previous methods and that our method is particularly effective when the training dataset is small. …

Shapley Regression Framework Machine learning models often excel in the accuracy of their predictions but are opaque due to their non-linear and non-parametric structure. This makes statistical inference challenging and disqualifies them from many applications where model interpretability is crucial. This paper proposes the Shapley regression framework as an approach for statistical inference on non-linear or non-parametric models. Inference is performed based on the Shapley value decomposition of a model, a pay-off concept from cooperative game theory. I show that universal approximators from machine learning are estimation consistent and introduce hypothesis tests for individual variable contributions, model bias and parametric functional forms. The inference properties of state-of-the-art machine learning models – like artificial neural networks, support vector machines and random forests – are investigated using numerical simulations and real-world data. The proposed framework is unique in the sense that it is identical to the conventional case of statistical inference on a linear model if the model is linear in parameters. This makes it a well-motivated extension to more general models and strengthens the case for the use of machine learning to inform decisions. …

Boundary Equilibrium Generative Adversarial Networ (BEGAN) We propose a new equilibrium enforcing method paired with a loss derived from the Wasserstein distance for training auto-encoder based Generative Adversarial Networks. This method balances the generator and discriminator during training. Additionally, it provides a new approximate convergence measure, fast and stable training and high visual quality. We also derive a way of controlling the trade-off between image diversity and visual quality. We focus on the image generation task, setting a new milestone in visual quality, even at higher resolutions. This is achieved while using a relatively simple model architecture and a standard training procedure. Tensorflow-BEGAN: Boundary Equilibrium Generative Adversarial Networks …

We consider the issue of multiple agents learning to communicate through reinforcement learning within partially observable environments, with a focus on information asymmetry in the second part of our work. We provide a review of the recent algorithms developed to improve the agents’ policy by allowing the sharing of information between agents and the learning of communication strategies, with a focus on Deep Recurrent Q-Network-based models. We also describe recent efforts to interpret the languages generated by these agents and study their properties in an attempt to generate human-language-like sentences. We discuss the metrics used to evaluate the generated communication strategies and propose a novel entropy-based evaluation metric. Finally, we address the issue of the cost of communication and introduce the idea of an experimental setup to expose this cost in cooperative-competitive game.Learning to Communicate in Multi-Agent Reinforcement Learning : A Review

Scanning all new published packages on PyPI I know that the quality is often quite bad. I try to filter out the worst ones and list here the ones which might be worth a look, being followed or inspire you in some way.

Scanning all new published packages on PyPI I know that the quality is often quite bad. I try to filter out the worst ones and list here the ones which might be worth a look, being followed or inspire you in some way.

“True AI, also known as artificial general intelligence or AGI, is an artificial system that acts essentially the way a human acts. On the other hand, most of the forms of artificial intelligence in existence these days is simply machine learning systems, and in many cases all the system is doing is fine tuning a complex non-linear function.”Daniel Goldman ( 10.04.2019 )

We propose a means to relate properties of an interconnected system to its separate component systems in the presence of cascade-like phenomena. Building on a theory of interconnection reminiscent of the behavioral approach to systems theory, we introduce the notion of generativity, and its byproduct, generative effects. Cascade effects, enclosing contagion phenomena and cascading failures, are seen as instances of generative effects. The latter are precisely the instances where properties of interest are not preserved or behave very badly when systems interact. The goal is to overcome that obstruction. We will show how to extract mathematical objects from the systems, that encode their generativity: their potential to generate new phenomena upon interaction. Those objects may then be used to link the properties of the interconnected system to its separate systems. Such a link will be executed through the use of exact sequences from commutative algebra.Generativity and Interactional Effects: an Overview

Memory Augmented Neural Network (MANN) Neural Turing Machines (NTMs) are an instance of Memory Augmented Neural Networks, a new class of recurrent neural networks which decouple computation from memory by introducing an external memory unit. NTMs have demonstrated superior performance over Long Short-Term Memory Cells in several sequence learning tasks. A number of open source implementations of NTMs exist but are unstable during training and/or fail to replicate the reported performance of NTMs. This paper presents the details of our successful implementation of a NTM. Our implementation learns to solve three sequential learning tasks from the original NTM paper. We find that the choice of memory contents initialization scheme is crucial in successfully implementing a NTM. Networks with memory contents initialized to small constant values converge on average 2 times faster than the next best memory contents initialization scheme. …

Slice Finder As machine learning (ML) systems become democratized, it becomes increasingly important to help users easily debug their models. However, current data tools are still primitive when it comes to helping users trace model performance problems all the way to the data. We focus on the particular problem of slicing data to identify subsets of the validation data where the model performs poorly. This is an important problem in model validation because the overall model performance can fail to reflect that of the smaller subsets, and slicing allows users to analyze the model performance on a more granular-level. Unlike general techniques (e.g., clustering) that can find arbitrary slices, our goal is to find interpretable slices (which are easier to take action compared to arbitrary subsets) that are problematic and large. We propose Slice Finder, which is an interactive framework for identifying such slices using statistical techniques. Applications include diagnosing model fairness and fraud detection, where identifying slices that are interpretable to humans is crucial. …

DDRL-AM Learning powerful discriminative features for remote sensing image scene classification is a challenging computer vision problem. In the past, most classification approaches were based on handcrafted features. However, most recent approaches to remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is only to use original RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show class activation map (CAM) encoded CNN models, codenamed DDRL-AM, trained using original RGB patches and attention map based class information provide complementary information to the standard RGB deep models. To the best of our knowledge, we are the first to investigate attention information encoded CNNs. Additionally, to enhance the discriminability, we further employ a recently developed object function called ‘center loss,’ which has proved to be very useful in face recognition. Finally, our framework provides attention guidance to the model in an end-to-end fashion. Extensive experiments on two benchmark datasets show that our approach matches or exceeds the performance of other methods. …

Short Term Attentive Working Memory Model (STAWM) The ability to look multiple times through a series of pose-adjusted glimpses is fundamental to human vision. This critical faculty allows us to understand highly complex visual scenes. Short term memory plays an integral role in aggregating the information obtained from these glimpses and informing our interpretation of the scene. Computational models have attempted to address glimpsing and visual attention but have failed to incorporate the notion of memory. We introduce a novel, biologically inspired visual working memory architecture that we term the Hebb-Rosenblatt memory. We subsequently introduce a fully differentiable Short Term Attentive Working Memory model (STAWM) which uses transformational attention to learn a memory over each image it sees. The state of our Hebb-Rosenblatt memory is embedded in STAWM as the weights space of a layer. By projecting different queries through this layer we can obtain goal-oriented latent representations for tasks including classification and visual reconstruction. Our model obtains highly competitive classification performance on MNIST and CIFAR-10. As demonstrated through the CelebA dataset, to perform reconstruction the model learns to make a sequence of updates to a canvas which constitute a parts-based representation. Classification with the self supervised representation obtained from MNIST is shown to be in line with the state of the art models (none of which use a visual attention mechanism). Finally, we show that STAWM can be trained under the dual constraints of classification and reconstruction to provide an interpretable visual sketchpad which helps open the ‘black-box’ of deep learning. …