• Home
  • About
  • Books
  • Courses
  • Documents
  • eBooks
  • Feeds
  • Images
  • Quotes
  • R Packages
  • What is …

AnalytiXon

~ Broaden your Horizon

Author Archives: Michael Laux

If you did not already know

28 Saturday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

Systematic Compositionality google
Systematic compositionality is the ability to recombine meaningful units with regular and predictable outcomes, and it’s seen as key to humans’ capacity for generalization in language. …

RDeepSense google
Recent advances in deep learning have led various applications to unprecedented achievements, which could potentially bring higher intelligence to a broad spectrum of mobile and ubiquitous applications. Although existing studies have demonstrated the effectiveness and feasibility of running deep neural network inference operations on mobile and embedded devices, they overlooked the reliability of mobile computing models. Reliability measurements such as predictive uncertainty estimations are key factors for improving the decision accuracy and user experience. In this work, we propose RDeepSense, the first deep learning model that provides well-calibrated uncertainty estimations for resource-constrained mobile and embedded devices. RDeepSense enables the predictive uncertainty by adopting a tunable proper scoring rule as the training criterion and dropout as the implicit Bayesian approximation, which theoretically proves its correctness.To reduce the computational complexity, RDeepSense employs efficient dropout and predictive distribution estimation instead of model ensemble or sampling-based method for inference operations. We evaluate RDeepSense with four mobile sensing applications using Intel Edison devices. Results show that RDeepSense can reduce around 90% of the energy consumption while producing superior uncertainty estimations and preserving at least the same model accuracy compared with other state-of-the-art methods. …

Symbol-Concept Association Network (SCAN) google
The natural world is infinitely diverse, yet this diversity arises from a relatively small set of coherent properties and rules, such as the laws of physics or chemistry. We conjecture that biological intelligent systems are able to survive within their diverse environments by discovering the regularities that arise from these rules primarily through unsupervised experiences, and representing this knowledge as abstract concepts. Such representations possess useful properties of compositionality and hierarchical organisation, which allow intelligent agents to recombine afinite set of conceptual building blocks into an exponentially large set of useful new concepts. This paper describes SCAN (Symbol-Concept Association Network), a new framework for learning such concepts in the visual domain. We first use the previously published beta-VAE (Higgins et al., 2017a) architecture to learn a disentangled representation of the latent structure of the visual world, before training SCAN to extract abstract concepts grounded in such disentangled visual primitives through fast symbol association. Our approach requires very few pairings between symbols and images and makes no assumptions about the choice of symbol representations.Once trained, SCAN is capable of multimodal bi-directional inference, generating a diverse set of image samples from symbolic descriptions and vice versa. It also allows for traversal and manipulation of the implicit hierarchy of compositional visual concepts through symbolic instructions and learnt logical recombination operations. Such manipulations enable SCAN to invent and learn novel visual concepts through recombination of the few learnt concepts. …

Hybrid-MST google
In this paper we present a hybrid active sampling strategy for pairwise preference aggregation, which aims at recovering the underlying rating of the test candidates from sparse and noisy pairwise labelling. Our method employs Bayesian optimization framework and Bradley-Terry model to construct the utility function, then to obtain the Expected Information Gain (EIG) of each pair. For computational efficiency, Gaussian-Hermite quadrature is used for estimation of EIG. In this work, a hybrid active sampling strategy is proposed, either using Global Maximum (GM) EIG sampling or Minimum Spanning Tree (MST) sampling in each trial, which is determined by the test budget. The proposed method has been validated on both simulated and real-world datasets, where it shows higher preference aggregation ability than the state-of-the-art methods. …

If you did not already know

26 Thursday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

ROI regularization (ROIreg) google
We propose ROI regularization (ROIreg) as a semi-supervised learning method for image classification. ROIreg focuses on the maximum probability of a posterior probability distribution g(x) obtained when inputting an unlabeled data sample x into a convolutional neural network (CNN). ROIreg divides the pixel set of x into multiple blocks and evaluates, for each block, its contribution to the maximum probability. A masked data sample x_ROI is generated by replacing blocks with relatively small degrees of contribution with random images. Then, ROIreg trains CNN so that g(x_ROI ) does not change as much as possible from g(x). Therefore, ROIreg can be said to refine the classification ability of CNN more. On the other hand, Virtual Adverserial Training (VAT), which is an excellent semi-supervised learning method, generates data sample x_VAT by perturbing x in the direction in which g(x) changes most. Then, VAT trains CNN so that g(x_VAT ) does not change from g(x) as much as possible. Therefore, VAT can be said to be a method to improve CNN’s weakness. Thus, ROIreg and VAT have complementary training effects. In fact, the combination of VAT and ROIreg improves the results obtained when using VAT or ROIreg alone. This combination also improves the state-of-the-art on ‘SVHN with and without data augmentation’ and ‘CIFAR-10 without data augmentation’. We also propose a method called ROI augmentation (ROIaug) as a method to apply ROIreg to data augmentation in supervised learning. However, the evaluation function used there is different from the standard cross-entropy. ROIaug improves the performance of supervised learning for both SVHN and CIFAR-10. Finally, we investigate the performance degradation of VAT and VAT+ROIreg when data samples not belonging to classification classes are included in unlabeled data. …

FinBrain google
Artificial intelligence (AI) is the core technology of technological revolution and industrial transformation. As one of the new intelligent needs in the AI 2.0 era, financial intelligence has elicited much attention from the academia and industry. In our current dynamic capital market, financial intelligence demonstrates a fast and accurate machine learning capability to handle complex data and has gradually acquired the potential to become a ‘financial brain’. In this work, we survey existing studies on financial intelligence. First, we describe the concept of financial intelligence and elaborate on its position in the financial technology field. Second, we introduce the development of financial intelligence and review state-of-the-art techniques in wealth management, risk management, financial security, financial consulting, and blockchain. Finally, we propose a research framework called FinBrain and summarize four open issues, namely, explainable financial agents and causality, perception and prediction under uncertainty, risk-sensitive and robust decision making, and multi-agent game and mechanism design. We believe that these research directions can lay the foundation for the development of AI 2.0 in the finance field. …

Synthetic Segmentation Network (SynSeg-Net) google
A key limitation of deep convolutional neural networks (DCNN) based image segmentation methods is the lack of generalizability. Manually traced training images are typically required when segmenting organs in a new imaging modality or from distinct disease cohort. The manual efforts can be alleviated if the manually traced images in one imaging modality (e.g., MRI) are able to train a segmentation network for another imaging modality (e.g., CT). In this paper, we propose an end-to-end synthetic segmentation network (SynSeg-Net) to train a segmentation network for a target imaging modality without having manual labels. SynSeg-Net is trained by using (1) unpaired intensity images from source and target modalities, and (2) manual labels only from source modality. SynSeg-Net is enabled by the recent advances of cycle generative adversarial networks (CycleGAN) and DCNN. We evaluate the performance of the SynSeg-Net on two experiments: (1) MRI to CT splenomegaly synthetic segmentation for abdominal images, and (2) CT to MRI total intracranial volume synthetic segmentation (TICV) for brain images. The proposed end-to-end approach achieved superior performance to two stage methods. Moreover, the SynSeg-Net achieved comparable performance to the traditional segmentation network using target modality labels in certain scenarios. The source code of SynSeg-Net is publicly available (https://…/SynSeg-Net ). …

Bidirectional Encoder Representations from Transformers for sequential Recommendation (BERT4Rec) google
Modeling users’ dynamic and evolving preferences from their historical behaviors is challenging and crucial for recommendation systems. Previous methods employ sequential neural networks (e.g., Recurrent Neural Network) to encode users’ historical interactions from left to right into hidden representations for making recommendations. Although these methods achieve satisfactory results, they often assume a rigidly ordered sequence which is not always practical. We argue that such left-to-right unidirectional architectures restrict the power of the historical sequence representations. For this purpose, we introduce a Bidirectional Encoder Representations from Transformers for sequential Recommendation (BERT4Rec). However, jointly conditioning on both left and right context in deep bidirectional model would make the training become trivial since each item can indirectly “see the target item”. To address this problem, we train the bidirectional model using the Cloze task, predicting the masked items in the sequence by jointly conditioning on their left and right context. Comparing with predicting the next item at each position in a sequence, the Cloze task can produce more samples to train a more powerful bidirectional model. Extensive experiments on four benchmark datasets show that our model outperforms various state-of-the-art sequential models consistently. …

If you did not already know

26 Thursday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

YARN google
MapReduce has undergone a complete overhaul in hadoop-0.23 and we now have, what we call, MapReduce 2.0 (MRv2) or YARN.
The fundamental idea of MRv2 is to split up the two major functionalities of the JobTracker, resource management and job scheduling/monitoring, into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a DAG of jobs.
The ResourceManager and per-node slave, the NodeManager (NM), form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system.
The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks. …


bolt google
Bringing multi-dimensional arrays to distributed settings through a unified Python interface. Bolt is an open source library providing a Python interface to ndarrays backed by local or distributed implementations (currently targeting Spark). We want to make working with big array data in Python as easy and seamless as in local settings, while exploiting the speed of proven distributed engines. …

Graph Normalizing Flow google
We introduce graph normalizing flows: a new, reversible graph neural network model for prediction and generation. On supervised tasks, graph normalizing flows perform similarly to message passing neural networks, but at a significantly reduced memory footprint, allowing them to scale to larger graphs. In the unsupervised case, we combine graph normalizing flows with a novel graph auto-encoder to create a generative model of graph structures. Our model is permutation-invariant, generating entire graphs with a single feed-forward pass, and achieves competitive results with the state-of-the art auto-regressive models, while being better suited to parallel computing architectures. …

Operational Intelligence (OI) google
Operational intelligence (OI) is a category of real-time dynamic, business analytics that delivers visibility and insight into data, streaming events and business operations. Operational Intelligence solutions run queries against streaming data feeds and event data to deliver real-time analytic results as operational instructions. Operational Intelligence provides organizations the ability to make decisions and immediately act on these analytic insights, through manual or automated actions. …

If you did not already know

24 Tuesday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

Sliced Wasserstein Generative Model google
In generative modeling, the Wasserstein distance (WD) has emerged as a useful metric to measure the discrepancy between generated and real data distributions. Unfortunately, it is challenging to approximate the WD of high-dimensional distributions. In contrast, the sliced Wasserstein distance (SWD) factorizes high-dimensional distributions into their multiple one-dimensional marginal distributions and is thus easier to approximate. In this paper, we introduce novel approximations of the primal and dual SWD. Instead of using a large number of random projections, as it is done by conventional SWD approximation methods, we propose to approximate SWDs with a small number of parameterized orthogonal projections in an end-to-end deep learning fashion. As concrete applications of our SWD approximations, we design two types of differentiable SWD blocks to equip modern generative frameworks—Auto-Encoders (AE) and Generative Adversarial Networks (GAN). In the experiments, we not only show the superiority of the proposed generative models on standard image synthesis benchmarks, but also demonstrate the state-of-the-art performance on challenging high resolution image and video generation in an unsupervised manner. …

Order Robust Adaptive Continual LEarning (ORACLE) google
The order of the tasks a continual learning model encounters may have large impact on the performance of each task, as well as the task-average performance. This order-sensitivity may cause serious problems in real-world scenarios where fairness plays a critical role (e.g. medical diagnosis). To tackle this problem, we propose a novel order-robust continual learning method, which instead of learning a completely shared set of weights, represent the parameters for each task as a sum of task-shared parameters that captures generic representations and task-adaptive parameters capturing task-specific ones, where the latter is factorized into sparse low-rank matrices in order to minimize capacity increase. With such parameter decomposition, when training for a new task, the task-adaptive parameters for earlier tasks remain mostly unaffected, where we update them only to reflect the changes made to the task-shared parameters. This prevents catastrophic forgetting for old tasks and at the same time make the model less sensitive to the task arrival order. We validate our Order-Robust Adaptive Continual LEarning (ORACLE) method on multiple benchmark datasets against state-of-the-art continual learning methods, and the results show that it largely outperforms those strong baselines with significantly less increase in capacity and training time, as well as obtains smaller performance disparity for each task with different order sequences. …

Expected Utility Hypothesis (EUH) google
In economics, game theory, and decision theory the expected utility hypothesis is a hypothesis concerning people’s preferences with regard to choices that have uncertain outcomes (gambles). This hypothesis states that if specific axioms are satisfied, the subjective value associated with an individual’s gamble is the statistical expectation of that individual’s valuations of the outcomes of that gamble. This hypothesis has proved useful to explain some popular choices that seem to contradict the expected value criterion (which takes into account only the sizes of the payouts and the probabilities of occurrence), such as occur in the contexts of gambling and insurance. Daniel Bernoulli initiated this hypothesis in 1738. Until the mid-twentieth century, the standard term for the expected utility was the moral expectation, contrasted with ‘mathematical expectation’ for the expected value. The von Neumann-Morgenstern utility theorem provides necessary and sufficient conditions under which the expected utility hypothesis holds. From relatively early on, it was accepted that some of these conditions would be violated by real decision-makers in practice but that the conditions could be interpreted nonetheless as ‘axioms’ of rational choice. Work by Anand (1993) argues against this normative interpretation and shows that ‘rationality’ does not require transitivity, independence or completeness. This view is now referred to as the ‘modern view’ and Anand argues that despite the normative and evidential difficulties the general theory of decision-making based on expected utility is an insightful first order approximation that highlights some important fundamental principles of choice, even if it imposes conceptual and technical limits on analysis which need to be relaxed in real world settings where knowledge is less certain or preferences are more sophisticated. …

KB4Rec google
To develop a knowledge-aware recommender system, a key data problem is how we can obtain rich and structured knowledge information for recommender system (RS) items. Existing datasets or methods either use side information from original recommender systems (containing very few kinds of useful information) or utilize private knowledge base (KB). In this paper, we present the first public linked KB dataset for recommender systems, named KB4Rec v1.0, which has linked three widely used RS datasets with the popular KB Freebase. Based on our linked dataset, we first preform some interesting qualitative analysis experiments, in which we discuss the effect of two important factors (i.e. popularity and recency) on whether a RS item can be linked to a KB entity. Finally, we present the comparison of several knowledge-aware recommendation algorithms on our linked dataset. …

If you did not already know

23 Monday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

Mutual Posterior-Divergence Regularization google
Variational Autoencoder (VAE), a simple and effective deep generative model, has led to a number of impressive empirical successes and spawned many advanced variants and theoretical investigations. However, recent studies demonstrate that, when equipped with expressive generative distributions (aka. decoders), VAE suffers from learning uninformative latent representations with the observation called KL Varnishing, in which case VAE collapses into an unconditional generative model. In this work, we introduce mutual posterior-divergence regularization, a novel regularization that is able to control the geometry of the latent space to accomplish meaningful representation learning, while achieving comparable or superior capability of density estimation. Experiments on three image benchmark datasets demonstrate that, when equipped with powerful decoders, our model performs well both on density estimation and representation learning. …

Shrinkwrap google
A private data federation is a set of autonomous databases that share a unified query interface offering in-situ evaluation of SQL queries over the union of the sensitive data of its members. Owing to privacy concerns, these systems do not have a trusted data collector that can see all their data and their member databases cannot learn about individual records of other engines. Federations currently achieve this goal by evaluating queries obliviously using secure multiparty computation. This hides the intermediate result cardinality of each query operator by exhaustively padding it. With cascades of such operators, this padding accumulates to a blow-up in the output size of each operator and a proportional loss in query performance. Hence, existing private data federations do not scale well to complex SQL queries over large datasets. We introduce Shrinkwrap, a private data federation that offers data owners a differentially private view of the data held by others to improve their performance over oblivious query processing. Shrinkwrap uses computational differential privacy to minimize the padding of intermediate query results, achieving up to 35X performance improvement over oblivious query processing. When the query needs differentially private output, Shrinkwrap provides a trade-off between result accuracy and query evaluation performance. …

Global Style Token (GST) google
In this work, we propose ‘global style tokens’ (GSTs), a bank of embeddings that are jointly trained within Tacotron, a state-of-the-art end-to-end speech synthesis system. The embeddings are trained with no explicit labels, yet learn to model a large range of acoustic expressiveness. GSTs lead to a rich set of significant results. The soft interpretable ‘labels’ they generate can be used to control synthesis in novel ways, such as varying speed and speaking style – independently of the text content. They can also be used for style transfer, replicating the speaking style of a single audio clip across an entire long-form text corpus. When trained on noisy, unlabeled found data, GSTs learn to factorize noise and speaker identity, providing a path towards highly scalable but robust speech synthesis. …

Multiagent Reinforcement Learning (MARL) google
To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agent treats its experience as part of its (non-stationary) environment.
Fully Decentralized Multi-Agent Reinforcement Learning with Networked Agents …

If you did not already know

23 Monday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

Joint Pyramid Upsampling (JPU) google
Modern approaches for semantic segmentation usually employ dilated convolutions in the backbone to extract high-resolution feature maps, which brings heavy computation complexity and memory footprint. To replace the time and memory consuming dilated convolutions, we propose a novel joint upsampling module named Joint Pyramid Upsampling (JPU) by formulating the task of extracting high-resolution feature maps into a joint upsampling problem. With the proposed JPU, our method reduces the computation complexity by more than three times without performance loss. Experiments show that JPU is superior to other upsampling modules, which can be plugged into many existing approaches to reduce computation complexity and improve performance. By replacing dilated convolutions with the proposed JPU module, our method achieves the state-of-the-art performance in Pascal Context dataset (mIoU of 53.13%) and ADE20K dataset (final score of 0.5584) while running 3 times faster. …

Community Question Answering Summarization Corpora (CQASUMM) google
Community Question Answering forums such as Quora, Stackoverflow are rich knowledge resources, often catering to information on topics overlooked by major search engines. Answers submitted to these forums are often elaborated, contain spam, are marred by slurs and business promotions. It is difficult for a reader to go through numerous such answers to gauge community opinion. As a result summarization becomes a prioritized task for CQA forums. While a number of efforts have been made to summarize factoid CQA, little work exists in summarizing non-factoid CQA. We believe this is due to the lack of a considerably large, annotated dataset for CQA summarization. We create CQASUMM, the first huge annotated CQA summarization dataset by filtering the 4.4 million Yahoo! Answers L6 dataset. We sample threads where the best answer can double up as a reference summary and build hundred word summaries from them. We treat other answers as candidates documents for summarization. We provide a script to generate the dataset and introduce the new task of Community Question Answering Summarization. Multi document summarization has been widely studied with news article datasets, especially in the DUC and TAC challenges using news corpora. However documents in CQA have higher variance, contradicting opinion and lesser amount of overlap. We compare the popular multi document summarization techniques and evaluate their performance on our CQA corpora. We look into the state-of-the-art and understand the cases where existing multi document summarizers (MDS) fail. We find that most MDS workflows are built for the entirely factual news corpora, whereas our corpus has a fair share of opinion based instances too. We therefore introduce OpinioSumm, a new MDS which outperforms the best baseline by 4.6% w.r.t ROUGE-1 score. …

DiReliefF google
Feature selection (FS) is a key research area in the machine learning and data mining fields, removing irrelevant and redundant features usually helps to reduce the effort required to process a dataset while maintaining or even improving the processing algorithm’s accuracy. However, traditional algorithms designed for executing on a single machine lack scalability to deal with the increasing amount of data that has become available in the current Big Data era. ReliefF is one of the most important algorithms successfully implemented in many FS applications. In this paper, we present a completely redesigned distributed version of the popular ReliefF algorithm based on the novel Spark cluster computing model that we have called DiReliefF. Spark is increasing its popularity due to its much faster processing times compared with Hadoop’s MapReduce model implementation. The effectiveness of our proposal is tested on four publicly available datasets, all of them with a large number of instances and two of them with also a large number of features. Subsets of these datasets were also used to compare the results to a non-distributed implementation of the algorithm. The results show that the non-distributed implementation is unable to handle such large volumes of data without specialized hardware, while our design can process them in a scalable way with much better processing times and memory usage. …

Federated Transfer Learning (FTL) google
Machine learning relies on the availability of a vast amount of data for training. However, in reality, most data are scattered across different organizations and cannot be easily integrated under many legal and practical constraints. In this paper, we introduce a new technique and framework, known as federated transfer learning (FTL), to improve statistical models under a data federation. The federation allows knowledge to be shared without compromising user privacy, and enables complimentary knowledge to be transferred in the network. As a result, a target-domain party can build more flexible and powerful models by leveraging rich labels from a source-domain party. A secure transfer cross validation approach is also proposed to guard the FTL performance under the federation. The framework requires minimal modifications to the existing model structure and provides the same level of accuracy as the non-privacy-preserving approach. This framework is very flexible and can be effectively adapted to various secure multi-party machine learning tasks. …

If you did not already know

21 Saturday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

Multi-Entity Bayesian Network (MEBN) google
Multi-Entity Bayesian Network (MEBN) is a knowledge representation formalism combining Bayesian Networks (BN) with First-Order Logic (FOL). MEBN has sufficient expressive power for general-purpose knowledge representation and reasoning. Developing a MEBN model to support a given application is a challenge, requiring definition of entities, relationships, random variables, conditional dependence relationships, and probability distributions. When available, data can be invaluable both to improve performance and to streamline development. By far the most common format for available data is the relational database (RDB). Relational databases describe and organize data according to the Relational Model (RM). Developing a MEBN model from data stored in an RDB therefore requires mapping between the two formalisms. …

Markov switch smooth-transition HYGARCH model google
HYGARCH model is basically used to model long-range dependence in volatility. We propose Markov switch smooth-transition HYGARCH model, where the volatility in each state is a time-dependent convex combination of GARCH and FIGARCH. This model provides a flexible structure to capture different levels of volatilities and also short and long memory effects. The necessary and sufficient condition for the asymptotic stability is derived. Forecast of conditional variance is studied by using all past information through a parsimonious way. Bayesian estimations based on Gibbs sampling are provided. A simulation study has been given to evaluate the estimations and model stability. The competitive performance of the proposed model is shown by comparing it with the HYGARCH and smooth-transition HYGARCH models for some period of the \textit{S}\&\textit{P}500 indices based on volatility and value-at-risk forecasts. …

Pontogammarus Maeoticus Swarm Optimization (PMSO) google
Nowadays, metaheuristic optimization algorithms are used to find the global optima in difficult search spaces. Pontogammarus Maeoticus Swarm Optimization (PMSO) is a metaheuristic algorithm imitating aquatic nature and foraging behavior. Pontogammarus Maeoticus, also called Gammarus in short, is a tiny creature found mostly in coast of Caspian Sea in Iran. In this algorithm, global optima is modeled as sea edge (coast) to which Gammarus creatures are willing to move in order to rest from sea waves and forage in sand. Sea waves satisfy exploration and foraging models exploitation. The strength of sea wave is determined according to distance of Gammarus from sea edge. The angles of waves applied on several particles are set randomly helping algorithm not be stuck in local bests. Meanwhile, the neighborhood of particles change adaptively resulting in more efficient progress in searching. The proposed algorithm, although is applicable on any optimization problem, is experimented for partially shaded solar PV array. Experiments on CEC05 benchmarks, as well as solar PV array, show the effectiveness of this optimization algorithm. …

Ambient Intelligence google
In computing, ambient intelligence (AmI) refers to electronic environments that are sensitive and responsive to the presence of people. Ambient intelligence is a vision on the future of consumer electronics, telecommunications and computing that was originally developed in the late 1990s by Eli Zelkha and his team at Palo Alto Ventures for the time frame 2010-2020. In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices (for example: The Internet of Things). As these devices grow smaller, more connected and more integrated into our environment, the technology disappears into our surroundings until only the user interface remains perceivable by users. …

If you did not already know

20 Friday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

Dynamic Multi-Objective Optimization Based Particle Swarm Optimization (Dynamic-MOPSO) google
The dynamic of real-world optimization problems raises new challenges to the traditional particle swarm optimization (PSO). Responding to these challenges, the dynamic optimization has received considerable attention over the past decade. This paper introduces a new dynamic multi-objective optimization based particle swarm optimization (Dynamic-MOPSO).The main idea of this paper is to solve such dynamic problem based on a new environment change detection strategy using the advantage of the particle swarm optimization. In this way, our approach has been developed not just to obtain the optimal solution, but also to have a capability to detect the environment changes. Thereby, Dynamic-MOPSO ensures the balance between the exploration and the exploitation in dynamic research space. Our approach is tested through the most popularized dynamic benchmark’s functions to evaluate its performance as a good method. …

Tweedie Distribution google
In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal and gamma distributions, the purely discrete scaled Poisson distribution, and the class of mixed compound Poisson-gamma distributions which have positive mass at zero, but are otherwise continuous. For any random variable Y that obeys a Tweedie distribution, the variance var(Y) relates to the mean E(Y) by the power law, where a and p are positive constants. The Tweedie distributions were named by Bent Joergensen after Maurice Tweedie, a statistician and medical physicist at the University of Liverpool, UK, who presented the first thorough study of these distributions in 1984. …

Bloom Filter google
A Bloom filter is a space-efficient probabilistic data structure, conceived by Burton Howard Bloom in 1970, that is used to test whether an element is a member of a set. False positive matches are possible, but false negatives are not, thus a Bloom filter has a 100% recall rate. In other words, a query returns either ‘possibly in set’ or ‘definitely not in set’. Elements can be added to the set, but not removed (though this can be addressed with a ‘counting’ filter). The more elements that are added to the set, the larger the probability of false positives. Bloom proposed the technique for applications where the amount of source data would require an impracticably large hash area in memory if ‘conventional’ error-free hashing techniques were applied. He gave the example of a hyphenation algorithm for a dictionary of 500,000 words, out of which 90% follow simple hyphenation rules, but the remaining 10% require expensive disk accesses to retrieve specific hyphenation patterns. With sufficient core memory, an error-free hash could be used to eliminate all unnecessary disk accesses; on the other hand, with limited core memory, Bloom’s technique uses a smaller hash area but still eliminates most unnecessary accesses. For example, a hash area only 15% of the size needed by an ideal error-free hash still eliminates 85% of the disk accesses (Bloom (1970)).
Role of Bloom Filter in Big Data Research: A Survey …


Adaptive Cross-Modal Few-Shot Learning google
Metric-based meta-learning techniques have successfully been applied to few-shot classification problems. However, leveraging cross-modal information in a few-shot setting has yet to be explored. When the support from visual information is limited in few-shot image classification, semantic representatins (learned from unsupervised text corpora) can provide strong prior knowledge and context to help learning. Based on this intuition, we design a model that is able to leverage visual and semantic features in the context of few-shot classification. We propose an adaptive mechanism that is able to effectively combine both modalities conditioned on categories. Through a series of experiments, we show that our method boosts the performance of metric-based approaches by effectively exploiting language structure. Using this extra modality, our model bypass current unimodal state-of-the-art methods by a large margin on two important benchmarks: mini-ImageNet and tiered-ImageNet. The improvement in performance is particularly large when the number of shots are small. …

If you did not already know

19 Thursday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

GAN Q-learning google
Distributional reinforcement learning (distributional RL) has seen empirical success in complex Markov Decision Processes (MDPs) in the setting of nonlinear function approximation. However, there are many different ways in which one can leverage the distributional approach to reinforcement learning. In this paper, we propose GAN Q-learning, a novel distributional RL method based on generative adversarial networks (GANs) and analyze its performance in simple tabular environments, as well as OpenAI Gym. We empirically show that our algorithm leverages the flexibility and blackbox approach of deep learning models while providing a viable alternative to other state-of-the-art methods. …

JigsawNet google
This paper proposes a novel algorithm to reassemble an arbitrarily shredded image to its original status. Existing reassembly pipelines commonly consist of a local matching stage and a global compositions stage. In the local stage, a key challenge in fragment reassembly is to reliably compute and identify correct pairwise matching, for which most existing algorithms use handcrafted features, and hence, cannot reliably handle complicated puzzles. We build a deep convolutional neural network to detect the compatibility of a pairwise stitching, and use it to prune computed pairwise matches. To improve the network efficiency and accuracy, we transfer the calculation of CNN to the stitching region and apply a boost training strategy. In the global composition stage, we modify the commonly adopted greedy edge selection strategies to two new loop closure based searching algorithms. Extensive experiments show that our algorithm significantly outperforms existing methods on solving various puzzles, especially those challenging ones with many fragment pieces. …

Trident Network (TridentNet) google
Scale variation is one of the key challenges in object detection. In this work, we first present a controlled experiment to investigate the effect of receptive fields on the detection of different scale objects. Based on the findings from the exploration experiments, we propose a novel Trident Network (TridentNet) aiming to generate scale-specific feature maps with a uniform representational power. We construct a parallel multi-branch architecture in which each branch shares the same transformation parameters but with different receptive fields. Then, we propose a scale-aware training scheme to specialize each branch by sampling object instances of proper scales for training. As a bonus, a fast approximation version of TridentNet could achieve significant improvements without any additional parameters and computational cost. On the COCO dataset, our TridentNet with ResNet-101 backbone achieves state-of-the-art single-model results by obtaining an mAP of 48.4. Code will be made publicly available. …

Tetris google
Inference efficiency is the predominant consideration in designing deep learning accelerators. Previous work mainly focuses on skipping zero values to deal with remarkable ineffectual computation, while zero bits in non-zero values, as another major source of ineffectual computation, is often ignored. The reason lies on the difficulty of extracting essential bits during operating multiply-and-accumulate (MAC) in the processing element. Based on the fact that zero bits occupy as high as 68.9% fraction in the overall weights of modern deep convolutional neural network models, this paper firstly proposes a weight kneading technique that could eliminate ineffectual computation caused by either zero value weights or zero bits in non-zero weights, simultaneously. Besides, a split-and-accumulate (SAC) computing pattern in replacement of conventional MAC, as well as the corresponding hardware accelerator design called Tetris are proposed to support weight kneading at the hardware level. Experimental results prove that Tetris could speed up inference up to 1.50x, and improve power efficiency up to 5.33x compared with the state-of-the-art baselines. …

If you did not already know

18 Wednesday Oct 2023

Posted by Michael Laux in What is ...

≈ Leave a comment

Differential Privacy Cleaning google
Data cleaning, or the process of detecting and repairing inaccurate or corrupt records in the data, is inherently human-driven. State of the art systems assume cleaning experts can access the data (or a sample of it) to tune the cleaning process. However, in many cases, privacy constraints disallow unfettered access to the data. To address this challenge, we observe and provide empirical evidence that data cleaning can be achieved without access to the sensitive data, but with access to a (noisy) query interface that supports a small set of linear counting query primitives. Motivated by this, we present DPClean, a first of a kind system that allows engineers tune data cleaning workflows while ensuring differential privacy. In DPClean, a cleaning engineer can pose sequences of aggregate counting queries with error tolerances. A privacy engine translates each query into a differentially private mechanism that returns an answer with error matching the specified tolerance, and allows the data owner track the overall privacy loss. With extensive experiments using human and simulated cleaning engineers on blocking and matching tasks, we demonstrate that our approach is able to achieve high cleaning quality while ensuring a reasonable privacy loss. …

Dual Attention Graph Convolutional Network (DAGCN) google
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence. …

Comet.ml google
Comet allows you to track, compare and collaborate on Machine Learning experiments. Use Comet.ml if you need a tool that:
· Allows for hyper parameters, metrics, code, stdout tracking
· Supports Keras, Tensorflow, PyTorch, scikit-learn out of the box and other libraries with the manual API.
· Runs seamlessly on every machine including your laptop, AWS, Azure or company owned machines …


RESTORE google
In data mining, the data in various business cases (e.g., sales, marketing, and demography) gets refreshed periodically. During the refresh, the old dataset is replaced by a new one. Confirming the quality of the new dataset can be challenging because changes are inevitable. How do analysts distinguish reasonable real-world changes vs. errors related to data capture or data transformation? While some of the errors are easy to spot, the others may be more subtle. In order to detect such types of errors, an analyst will typically have to examine the data manually and assess if the data produced are ‘believable’. Due to the scale of data, such examination is tedious and laborious. Thus, to save the analyst’s time, it is important to detect these errors automatically. However, both the literature and the industry are still lacking methods to assess the difference between old and new versions of a dataset during the refresh process. In this paper, we present a comprehensive set of tests for the detection of abnormalities in a refreshed dataset, based on the information obtained from a previous vintage of the dataset. We implement these tests in automated test harness made available as an open-source package, called RESTORE, for R language. The harness accepts flat or hierarchical numeric datasets. We also present a validation case study, where we apply our test harness to hierarchical demographic datasets. The results of the study and feedback from data scientists using the package suggest that RESTORE enables fast and efficient detection of errors in the data as well as decreases the cost of testing. …

← Older posts
Newer posts →

Blogs by Category

  • arXiv
  • arXiv Papers
  • Blogs
  • Books
  • Causality
  • Distilled News
  • Documents
  • Ethics
  • Magister Dixit
  • Personal Productivity
  • Python Packages
  • R Packages
  • Uncategorized
  • What is …
  • WordPress

Blogs by Month

Follow Blog via Email

Enter your email address to follow this blog and receive notifications of new posts by email.

Follow AnalytiXon

Powered by WordPress.com.

 

Loading Comments...