Adaptive SVM+ google
Incorporating additional knowledge in the learning process can be beneficial for several computer vision and machine learning tasks. Whether privileged information originates from a source domain that is adapted to a target domain, or as additional features available at training time only, using such privileged (i.e., auxiliary) information is of high importance as it improves the recognition performance and generalization. However, both primary and privileged information are rarely derived from the same distribution, which poses an additional challenge to the recognition task. To address these challenges, we present a novel learning paradigm that leverages privileged information in a domain adaptation setup to perform visual recognition tasks. The proposed framework, named Adaptive SVM+, combines the advantages of both the learning using privileged information (LUPI) paradigm and the domain adaptation framework, which are naturally embedded in the objective function of a regular SVM. We demonstrate the effectiveness of our approach on the publicly available Animals with Attributes and INTERACT datasets and report state-of-the-art results in both of them. …

Graph Adversarial Training (GAT) google
Recent efforts show that neural networks are vulnerable to small but intentional perturbations on input features in visual classification tasks. Due to the additional consideration of connections between examples (e.g., articles with citation link tend to be in the same class), graph neural networks could be more sensitive to the perturbations, since the perturbations from connected examples exacerbate the impact on a target example. Adversarial Training (AT), a dynamic regularization technique, can resist the worst-case perturbations on input features and is a promising choice to improve model robustness and generalization. However, existing AT methods focus on standard classification, being less effective when training models on graph since it does not model the impact from connected examples. In this work, we explore adversarial training on graph, aiming to improve the robustness and generalization of models learned on graph. We propose Graph Adversarial Training (GAT), which takes the impact from connected examples into account when learning to construct and resist perturbations. We give a general formulation of GAT, which can be seen as a dynamic regularization scheme based on the graph structure. To demonstrate the utility of GAT, we employ it on a state-of-the-art graph neural network model — Graph Convolutional Network (GCN). We conduct experiments on two citation graphs (Citeseer and Cora) and a knowledge graph (NELL), verifying the effectiveness of GAT which outperforms normal training on GCN by 4.51% in node classification accuracy. Codes will be released upon acceptance. …

Buffered Stochastic Variational Inference (BSVI) google
The recognition network in deep latent variable models such as variational autoencoders (VAEs) relies on amortized inference for efficient posterior approximation that can scale up to large datasets. However, this technique has also been demonstrated to select suboptimal variational parameters, often resulting in considerable additional error called the amortization gap. To close the amortization gap and improve the training of the generative model, recent works have introduced an additional refinement step that applies stochastic variational inference (SVI) to improve upon the variational parameters returned by the amortized inference model. In this paper, we propose the Buffered Stochastic Variational Inference (BSVI), a new refinement procedure that makes use of SVI’s sequence of intermediate variational proposal distributions and their corresponding importance weights to construct a new generalized importance-weighted lower bound. We demonstrate empirically that training the variational autoencoders with BSVI consistently out-performs SVI, yielding an improved training procedure for VAEs. …

Runtime Neuron Activation Pattern Monitoring google
For using neural networks in safety critical domains, it is important to know if a decision made by a neural network is supported by prior similarities in training. We propose runtime neuron activation pattern monitoring – after the standard training process, one creates a monitor by feeding the training data to the network again in order to store the neuron activation patterns in abstract form. In operation, a classification decision over an input is further supplemented by examining if a pattern similar (measured by Hamming distance) to the generated pattern is contained in the monitor. If the monitor does not contain any pattern similar to the generated pattern, it raises a warning that the decision is not based on the training data. Our experiments show that, by adjusting the similarity-threshold for activation patterns, the monitors can report a significant portion of misclassfications to be not supported by training with a small false-positive rate, when evaluated on a test set. …