Infinite Gaussian Mixture Model Coupled With (bi-Directional) Generative Adversarial Network (IGMM-GAN) google
Detecting anomalous activity in human mobility data has a number of applications including road hazard sensing, telematic based insurance, and fraud detection in taxi services and ride sharing. In this paper we address two challenges that arise in the study of anomalous human trajectories: 1) a lack of ground truth data on what defines an anomaly and 2) the dependence of existing methods on significant pre-processing and feature engineering. While generative adversarial networks seem like a natural fit for addressing these challenges, we find that existing GAN based anomaly detection algorithms perform poorly due to their inability to handle multimodal patterns. For this purpose we introduce an infinite Gaussian mixture model coupled with (bi-directional) generative adversarial networks, IGMM-GAN, that is able to generate synthetic, yet realistic, human mobility data and simultaneously facilitates multimodal anomaly detection. Through estimation of a generative probability density on the space of human trajectories, we are able to generate realistic synthetic datasets that can be used to benchmark existing anomaly detection methods. The estimated multimodal density also allows for a natural definition of outlier that we use for detecting anomalous trajectories. We illustrate our methodology and its improvement over existing GAN anomaly detection on several human mobility datasets, along with MNIST. …

DeepSwarm google
In this paper we propose DeepSwarm, a novel neural architecture search (NAS) method based on Swarm Intelligence principles. At its core DeepSwarm uses Ant Colony Optimization (ACO) to generate ant population which uses the pheromone information to collectively search for the best neural architecture. Furthermore, by using local and global pheromone update rules our method ensures the balance between exploitation and exploration. On top of this, to make our method more efficient we combine progressive neural architecture search with weight reusability. Furthermore, due to the nature of ACO our method can incorporate heuristic information which can further speed up the search process. After systematic and extensive evaluation, we discover that on three different datasets (MNIST, Fashion-MNIST, and CIFAR-10) when compared to existing systems our proposed method demonstrates competitive performance. Finally, we open source DeepSwarm as a NAS library and hope it can be used by more deep learning researchers and practitioners. …

AutoAugment google
Previous attempts for data augmentation are designed manually, and the augmentation policies are dataset-specific. Recently, an automatic data augmentation approach, named AutoAugment, is proposed using reinforcement learning. AutoAugment searches for the augmentation polices in the discrete search space, which may lead to a sub-optimal solution. In this paper, we employ the Augmented Random Search method (ARS) to improve the performance of AutoAugment. Our key contribution is to change the discrete search space to continuous space, which will improve the searching performance and maintain the diversities between sub-policies. With the proposed method, state-of-the-art accuracies are achieved on CIFAR-10, CIFAR-100, and ImageNet (without additional data). Our code is available at https://…/ARS-Aug.

NCRF++ google
This paper describes NCRF++, a toolkit for neural sequence labeling. NCRF++ is designed for quick implementation of different neural sequence labeling models with a CRF inference layer. It provides users with an inference for building the custom model structure through configuration file with flexible neural feature design and utilization. Built on PyTorch, the core operations are calculated in batch, making the toolkit efficient with the acceleration of GPU. It also includes the implementations of most state-of-the-art neural sequence labeling models such as LSTM-CRF, facilitating reproducing and refinement on those methods. …