**Kaleido**

Graph mining is one of the most important categories of graph algorithms. However, exploring the subgraphs of an input graph produces a huge amount of intermediate data. The ‘think like a vertex’ programming paradigm, pioneered by Pregel, cannot readily formulate mining problems, which is designed to produce graph computation problems like PageRank. Existing mining systems like Arabesque and RStream need large amounts of computing and memory resources. In this paper, we present Kaleido, an efficient single machine, out-of-core graph mining system which treats disks as an extension of memory. Kaleido treats intermediate data in graph mining tasks as a tensor and adopts a succinct data structure for the intermediate data. Kaleido utilizes the eigenvalue of the adjacency matrix of a subgraph to efficiently solve the subgraph isomorphism problems with an acceptable constraint that the vertex number of a subgraph is less than 9. Kaleido implements half-memory-half-disk storage for storing large intermediate data, which treats the disk as an extension of the memory. Comparing with two state-of-the-art mining systems, Arabesque and RStream, Kaleido outperforms them by a GeoMean 12.3$\times$ and 40.0$\times$ respectively. … **Orbital Petri Net (OPN)**

Petri Nets is very interesting tool for studying and simulating different behaviors of information systems. It can be used in different applications based on the appropriate class of Petri Nets whereas it is classical, colored or timed Petri Nets. In this paper we introduce a new approach of Petri Nets called orbital Petri Nets (OPN) for studying the orbital rotating systems within a specific domain. The study investigated and analyzed OPN with highlighting the problem of space debris collision problem as a case study. The mathematical investigation results of two OPN models proved that space debris collision problem can be prevented based on the new method of firing sequence in OPN. By this study, new smart algorithms can be implemented and simulated by orbital Petri Nets for mitigating the space debris collision problem as a next work. … **Graph Attention Auto-Encoder (GATE)**

Auto-encoders have emerged as a successful framework for unsupervised learning. However, conventional auto-encoders are incapable of utilizing explicit relations in structured data. To take advantage of relations in graph-structured data, several graph auto-encoders have recently been proposed, but they neglect to reconstruct either the graph structure or node attributes. In this paper, we present the graph attention auto-encoder (GATE), a neural network architecture for unsupervised representation learning on graph-structured data. Our architecture is able to reconstruct graph-structured inputs, including both node attributes and the graph structure, through stacked encoder/decoder layers equipped with self-attention mechanisms. In the encoder, by considering node attributes as initial node representations, each layer generates new representations of nodes by attending over their neighbors’ representations. In the decoder, we attempt to reverse the encoding process to reconstruct node attributes. Moreover, node representations are regularized to reconstruct the graph structure. Our proposed architecture does not need to know the graph structure upfront, and thus it can be applied to inductive learning. Our experiments demonstrate competitive performance on several node classification benchmark datasets for transductive and inductive tasks, even exceeding the performance of supervised learning baselines in most cases. … **TuRF**

FPGA becomes a popular technology for implementing Convolutional Neural Network (CNN) in recent years. Most CNN applications on FPGA are domain-specific, e.g., detecting objects from specific categories, in which commonly-used CNN models pre-trained on general datasets may not be efficient enough. This paper presents TuRF, an end-to-end CNN acceleration framework to efficiently deploy domain-specific applications on FPGA by transfer learning that adapts pre-trained models to specific domains, replacing standard convolution layers with efficient convolution blocks, and applying layer fusion to enhance hardware design performance. We evaluate TuRF by deploying a pre-trained VGG-16 model for a domain-specific image recognition task onto a Stratix V FPGA. Results show that designs generated by TuRF achieve better performance than prior methods for the original VGG-16 and ResNet-50 models, while for the optimised VGG-16 model TuRF designs are more accurate and easier to process. …

# If you did not already know

**06**
*Wednesday*
Sep 2023

Posted What is ...

in