Compatible Policy Search (COPOS)
Trust-region methods have yielded state-of-the-art results in policy search. A common approach is to use KL-divergence to bound the region of trust resulting in a natural gradient policy update. We show that the natural gradient and trust region optimization are equivalent if we use the natural parameterization of a standard exponential policy distribution in combination with compatible value function approximation. Moreover, we show that standard natural gradient updates may reduce the entropy of the policy according to a wrong schedule leading to premature convergence. To control entropy reduction we introduce a new policy search method called compatible policy search (COPOS) which bounds entropy loss. The experimental results show that COPOS yields state-of-the-art results in challenging continuous control tasks and in discrete partially observable tasks. …
Stein’s Unbiased Risk Estimate (SURE)
Stein’s unbiased risk estimate (SURE) is an unbiased estimator of the mean-squared error of ‘a nearly arbitrary, nonlinear biased estimator.’ In other words, it provides an indication of the accuracy of a given estimator. This is important since the true mean-squared error of an estimator is a function of the unknown parameter to be estimated, and thus cannot be determined exactly. The technique is named after its discoverer, Charles Stein.
On an improvement of LASSO by scaling …
Textology
A Textology is a graph of word clusters connected by co-occurrence relations. …
Sliding Line Point Regression (SLPR)
Traditional text detection methods mostly focus on quadrangle text. In this study we propose a novel method named sliding line point regression (SLPR) in order to detect arbitrary-shape text in natural scene. SLPR regresses multiple points on the edge of text line and then utilizes these points to sketch the outlines of the text. The proposed SLPR can be adapted to many object detection architectures such as Faster R-CNN and R-FCN. Specifically, we first generate the smallest rectangular box including the text with region proposal network (RPN), then isometrically regress the points on the edge of text by using the vertically and horizontally sliding lines. To make full use of information and reduce redundancy, we calculate x-coordinate or y-coordinate of target point by the rectangular box position, and just regress the remaining y-coordinate or x-coordinate. Accordingly we can not only reduce the parameters of system, but also restrain the points which will generate more regular polygon. Our approach achieved competitive results on traditional ICDAR2015 Incidental Scene Text benchmark and curve text detection dataset CTW1500. …
If you did not already know
18 Thursday May 2023
Posted What is ...
in