Diversity Index
A diversity index is a quantitative measure that reflects how many different types (such as species) there are in a dataset, and simultaneously takes into account how evenly the basic entities (such as individuals) are distributed among those types. The value of a diversity index increases both when the number of types increases and when evenness increases. For a given number of types, the value of a diversity index is maximized when all types are equally abundant. …
HornConcerto
Graph representations of large knowledge bases may comprise billions of edges. Usually built upon human-generated ontologies, several knowledge bases do not feature declared ontological rules and are far from being complete. Current rule mining approaches rely on schemata or store the graph in-memory, which can be unfeasible for large graphs. In this paper, we introduce HornConcerto, an algorithm to discover Horn clauses in large graphs without the need of a schema. Using a standard fact-based confidence score, we can mine close Horn rules having an arbitrary body size. We show that our method can outperform existing approaches in terms of runtime and memory consumption and mine high-quality rules for the link prediction task, achieving state-of-the-art results on a widely-used benchmark. Moreover, we find that rules alone can perform inference significantly faster than embedding-based methods and achieve accuracies on link prediction comparable to resource-demanding approaches such as Markov Logic Networks. …
Variational Collaborative Model (VCM)
Collaborative filtering (CF) has been successfully employed by many modern recommender systems. Conventional CF-based methods use the user-item interaction data as the sole information source to recommend items to users. However, CF-based methods are known for suffering from cold start problems and data sparsity problems. Hybrid models that utilize auxiliary information on top of interaction data have increasingly gained attention. A few ‘collaborative learning’-based models, which tightly bridges two heterogeneous learners through mutual regularization, are recently proposed for the hybrid recommendation. However, the ‘collaboration’ in the existing methods are actually asynchronous due to the alternative optimization of the two learners. Leveraging the recent advances in variational autoencoder~(VAE), we here propose a model consisting of two streams of mutual linked VAEs, named variational collaborative model (VCM). Unlike the mutual regularization used in previous works where two learners are optimized asynchronously, VCM enables a synchronous collaborative learning mechanism. Besides, the two stream VAEs setup allows VCM to fully leverages the Bayesian probabilistic representations in collaborative learning. Extensive experiments on three real-life datasets have shown that VCM outperforms several state-of-art methods. …
Human-eYe Perceptual Evaluation (HYPE)
Generative models often use human evaluations to determine and justify progress. Unfortunately, existing human evaluation methods are ad-hoc: there is currently no standardized, validated evaluation that: (1) measures perceptual fidelity, (2) is reliable, (3) separates models into clear rank order, and (4) ensures high-quality measurement without intractable cost. In response, we construct Human-eYe Perceptual Evaluation (HYPE), a human metric that is (1) grounded in psychophysics research in perception, (2) reliable across different sets of randomly sampled outputs from a model, (3) results in separable model performances, and (4) efficient in cost and time. We introduce two methods. The first, HYPE-Time, measures visual perception under adaptive time constraints to determine the minimum length of time (e.g., 250ms) that model output such as a generated face needs to be visible for people to distinguish it as real or fake. The second, HYPE-Infinity, measures human error rate on fake and real images with no time constraints, maintaining stability and drastically reducing time and cost. We test HYPE across four state-of-the-art generative adversarial networks (GANs) on unconditional image generation using two datasets, the popular CelebA and the newer higher-resolution FFHQ, and two sampling techniques of model outputs. By simulating HYPE’s evaluation multiple times, we demonstrate consistent ranking of different models, identifying StyleGAN with truncation trick sampling (27.6% HYPE-Infinity deception rate, with roughly one quarter of images being misclassified by humans) as superior to StyleGAN without truncation (19.0%) on FFHQ. See https://hype.stanford.edu for details. …
If you did not already know
25 Saturday Mar 2023
Posted What is ...
in