Subspace-CUSUM google
We consider the sequential change-point detection problem of detecting changes that are characterized by a subspace structure. Such changes are frequent in high-dimensional streaming data altering the form of the corresponding covariance matrix. In this work we present a Subspace-CUSUM procedure and demonstrate its first-order asymptotic optimality properties for the case where the subspace structure is unknown and needs to be simultaneously estimated. To achieve this goal we develop a suitable analytical methodology that includes a proper parameter optimization for the proposed detection scheme. Numerical simulations corroborate our theoretical findings. …

Sliding Convolutional Attention Network (SCAN) google
Scene text recognition has drawn great attentions in the community of computer vision and artificial intelligence due to its challenges and wide applications. State-of-the-art recurrent neural networks (RNN) based models map an input sequence to a variable length output sequence, but are usually applied in a black box manner and lack of transparency for further improvement, and the maintaining of the entire past hidden states prevents parallel computation in a sequence. In this paper, we investigate the intrinsic characteristics of text recognition, and inspired by human cognition mechanisms in reading texts, we propose a scene text recognition method with sliding convolutional attention network (SCAN). Similar to the eye movement during reading, the process of SCAN can be viewed as an alternation between saccades and visual fixations. Compared to the previous recurrent models, computations over all elements of SCAN can be fully parallelized during training. Experimental results on several challenging benchmarks, including the IIIT5k, SVT and ICDAR 2003/2013 datasets, demonstrate the superiority of SCAN over state-of-the-art methods in terms of both the model interpretability and performance. …

Coded TeraSort google
We focus on sorting, which is the building block of many machine learning algorithms, and propose a novel distributed sorting algorithm, named Coded TeraSort, which substantially improves the execution time of the TeraSort benchmark in Hadoop MapReduce. The key idea of Coded TeraSort is to impose structured redundancy in data, in order to enable in-network coding opportunities that overcome the data shuffling bottleneck of TeraSort. We empirically evaluate the performance of CodedTeraSort algorithm on Amazon EC2 clusters, and demonstrate that it achieves 1.97x – 3.39x speedup, compared with TeraSort, for typical settings of interest. …

Multitask Soft Option Learning (MSOL) google
We present Multitask Soft Option Learning (MSOL), a hierarchical multitask framework based on Planning as Inference. MSOL extends the concept of options, using separate variational posteriors for each task, regularized by a shared prior. This allows fine-tuning of options for new tasks without forgetting their learned policies, leading to faster training without reducing the expressiveness of the hierarchical policy. Additionally, MSOL avoids several instabilities during training in a multitask setting and provides a natural way to not only learn intra-option policies, but also their terminations. We demonstrate empirically that MSOL significantly outperforms both hierarchical and flat transfer-learning baselines in challenging multi-task environments. …