Robust Conditional GAN (RCGAN) google
We study the problem of learning conditional generators from noisy labeled samples, where the labels are corrupted by random noise. A standard training of conditional GANs will not only produce samples with wrong labels, but also generate poor quality samples. We consider two scenarios, depending on whether the noise model is known or not. When the distribution of the noise is known, we introduce a novel architecture which we call Robust Conditional GAN (RCGAN). The main idea is to corrupt the label of the generated sample before feeding to the adversarial discriminator, forcing the generator to produce samples with clean labels. This approach of passing through a matching noisy channel is justified by corresponding multiplicative approximation bounds between the loss of the RCGAN and the distance between the clean real distribution and the generator distribution. This shows that the proposed approach is robust, when used with a carefully chosen discriminator architecture, known as projection discriminator. When the distribution of the noise is not known, we provide an extension of our architecture, which we call RCGAN-U, that learns the noise model simultaneously while training the generator. We show experimentally on MNIST and CIFAR-10 datasets that both the approaches consistently improve upon baseline approaches, and RCGAN-U closely matches the performance of RCGAN. …

Memory In Memory (MIM) google
Natural spatiotemporal processes can be highly non-stationary in many ways, e.g. the low-level non-stationarity such as spatial correlations or temporal dependencies of local pixel values; and the high-level variations such as the accumulation, deformation or dissipation of radar echoes in precipitation forecasting. From Cramer’s Decomposition, any non-stationary process can be decomposed into deterministic, time-variant polynomials, plus a zero-mean stochastic term. By applying differencing operations appropriately, we may turn time-variant polynomials into a constant, making the deterministic component predictable. However, most previous recurrent neural networks for spatiotemporal prediction do not use the differential signals effectively, and their relatively simple state transition functions prevent them from learning too complicated variations in spacetime. We propose the Memory In Memory (MIM) networks and corresponding recurrent blocks for this purpose. The MIM blocks exploit the differential signals between adjacent recurrent states to model the non-stationary and approximately stationary properties in spatiotemporal dynamics with two cascaded, self-renewed memory modules. By stacking multiple MIM blocks, we could potentially handle higher-order non-stationarity. The MIM networks achieve the state-of-the-art results on three spatiotemporal prediction tasks across both synthetic and real-world datasets. We believe that the general idea of this work can be potentially applied to other time-series forecasting tasks. …

Local Mahalanobis Distance Learning (LMDL) google
Distance metric learning is a successful way to enhance the performance of the nearest neighbor classifier. In most cases, however, the distribution of data does not obey a regular form and may change in different parts of the feature space. Regarding that, this paper proposes a novel local distance metric learning method, namely Local Mahalanobis Distance Learning (LMDL), in order to enhance the performance of the nearest neighbor classifier. LMDL considers the neighborhood influence and learns multiple distance metrics for a reduced set of input samples. The reduced set is called as prototypes which try to preserve local discriminative information as much as possible. The proposed LMDL can be kernelized very easily, which is significantly desirable in the case of highly nonlinear data. The quality as well as the efficiency of the proposed method assesses through a set of different experiments on various datasets and the obtained results show that LDML as well as the kernelized version is superior to the other related state-of-the-art methods. …

Propagation Map google
Deep neural networks were shown to be vulnerable to single pixel modifications. However, the reason behind such phenomena has never been elucidated. Here, we propose Propagation Maps which show the influence of the perturbation in each layer of the network. Propagation Maps reveal that even in extremely deep networks such as Resnet, modification in one pixel easily propagates until the last layer. In fact, this initial local perturbation is also shown to spread becoming a global one and reaching absolute difference values that are close to the maximum value of the original feature maps in a given layer. Moreover, we do a locality analysis in which we demonstrate that nearby pixels of the perturbed one in the one-pixel attack tend to share the same vulnerability, revealing that the main vulnerability lies in neither neurons nor pixels but receptive fields. Hopefully, the analysis conducted in this work together with a new technique called propagation maps shall shed light into the inner workings of other adversarial samples and be the basis of new defense systems to come. …