Neuromorphic Hardware google
Hyperparameters and learning algorithms for neuromorphic hardware are usually chosen by hand. In contrast, the hyperparameters and learning algorithms of networks of neurons in the brain, which they aim to emulate, have been optimized through extensive evolutionary and developmental processes for specific ranges of computing and learning tasks. Occasionally this process has been emulated through genetic algorithms, but these require themselves hand-design of their details and tend to provide a limited range of improvements. We employ instead other powerful gradient-free optimization tools, such as cross-entropy methods and evolutionary strategies, in order to port the function of biological optimization processes to neuromorphic hardware. As an example, we show that this method produces neuromorphic agents that learn very efficiently from rewards. In particular, meta-plasticity, i.e., the optimization of the learning rule which they use, substantially enhances reward-based learning capability of the hardware. In addition, we demonstrate for the first time Learning-to-Learn benefits from such hardware, in particular, the capability to extract abstract knowledge from prior learning experiences that speeds up the learning of new but related tasks. Learning-to-Learn is especially suited for accelerated neuromorphic hardware, since it makes it feasible to carry out the required very large number of network computations. …

TernausNetV2 google
The most common approaches to instance segmentation are complex and use two-stage networks with object proposals, conditional random-fields, template matching or recurrent neural networks. In this work we present TernausNetV2 – a simple fully convolutional network that allows extracting objects from a high-resolution satellite imagery on an instance level. The network has popular encoder-decoder type of architecture with skip connections but has a few essential modifications that allows using for semantic as well as for instance segmentation tasks. This approach is universal and allows to extend any network that has been successfully applied for semantic segmentation to perform instance segmentation task. In addition, we generalize network encoder that was pre-trained for RGB images to use additional input channels. It makes possible to use transfer learning from visual to a wider spectral range. For DeepGlobe-CVPR 2018 building detection sub-challenge, based on public leaderboard score, our approach shows superior performance in comparison to other methods. The source code corresponding pre-trained weights are publicly available at https://…/TernausNetV2

Multi-Differential Fairness Auditor (MDFA) google
Machine learning algorithms are increasingly involved in sensitive decision-making process with adversarial implications on individuals. This paper presents mdfa, an approach that identifies the characteristics of the victims of a classifier’s discrimination. We measure discrimination as a violation of multi-differential fairness. Multi-differential fairness is a guarantee that a black box classifier’s outcomes do not leak information on the sensitive attributes of a small group of individuals. We reduce the problem of identifying worst-case violations to matching distributions and predicting where sensitive attributes and classifier’s outcomes coincide. We apply mdfa to a recidivism risk assessment classifier and demonstrate that individuals identified as African-American with little criminal history are three-times more likely to be considered at high risk of violent recidivism than similar individuals but not African-American. …

Localized Information Privacy (LIP) google
In this paper, localized information privacy (LIP) is proposed, as a new privacy definition, which allows statistical aggregation while protecting users’ privacy without relying on a trusted third party. The notion of context-awareness is incorporated in LIP by the introduction of priors, which enables the design of privacy-preserving data aggregation with knowledge of priors. We show that LIP relaxes the Localized Differential Privacy (LDP) notion by explicitly modeling the adversary’s knowledge. However, it is stricter than $2\epsilon$-LDP and $\epsilon$-mutual information privacy. The incorporation of local priors allows LIP to achieve higher utility compared to other approaches. We then present an optimization framework for privacy-preserving data aggregation, with the goal of minimizing the expected squared error while satisfying the LIP privacy constraints. Utility-privacy tradeoffs are obtained under several models in closed-form. We then validate our analysis by {numerical analysis} using both synthetic and real-world data. Results show that our LIP mechanism provides better utility-privacy tradeoffs than LDP and when the prior is not uniformly distributed, the advantage of LIP is even more significant. …