**Joint Sequence Fusion (JSFusion)**

We present an approach named JSFusion (Joint Sequence Fusion) that can measure semantic similarity between any pairs of multimodal sequence data (e.g. a video clip and a language sentence). Our multimodal matching network consists of two key components. First, the Joint Semantic Tensor composes a dense pairwise representation of two sequence data into a 3D tensor. Then, the Convolutional Hierarchical Decoder computes their similarity score by discovering hidden hierarchical matches between the two sequence modalities. Both modules leverage hierarchical attention mechanisms that learn to promote well-matched representation patterns while prune out misaligned ones in a bottom-up manner. Although the JSFusion is a universal model to be applicable to any multimodal sequence data, this work focuses on video-language tasks including multimodal retrieval and video QA. We evaluate the JSFusion model in three retrieval and VQA tasks in LSMDC, for which our model achieves the best performance reported so far. We also perform multiple-choice and movie retrieval tasks for the MSR-VTT dataset, on which our approach outperforms many state-of-the-art methods. … **Graph Pattern Entity Ranking Model (GRank)**

Knowledge graphs have evolved rapidly in recent years and their usefulness has been demonstrated in many artificial intelligence tasks. However, knowledge graphs often have lots of missing facts. To solve this problem, many knowledge graph embedding models have been developed to populate knowledge graphs and these have shown outstanding performance. However, knowledge graph embedding models are so-called black boxes, and the user does not know how the information in a knowledge graph is processed and the models can be difficult to interpret. In this paper, we utilize graph patterns in a knowledge graph to overcome such problems. Our proposed model, the {\it graph pattern entity ranking model} (GRank), constructs an entity ranking system for each graph pattern and evaluates them using a ranking measure. By doing so, we can find graph patterns which are useful for predicting facts. Then, we perform link prediction tasks on standard datasets to evaluate our GRank method. We show that our approach outperforms other state-of-the-art approaches such as ComplEx and TorusE for standard metrics such as HITS@{\it n} and MRR. Moreover, our model is easily interpretable because the output facts are described by graph patterns. … **Bias/Variance Tradeoff**

In machine learning, the bias-variance dilemma or bias-variance tradeoff is the problem of simultaneously minimizing the bias (how accurate a model is across different training sets) and variance of the model error (how sensitive the model is to small changes in training set). This tradeoff applies to all forms of supervised learning: classification, function fitting, and structured output learning. It has also been invoked to explain the effectiveness of heuristics in human learning. … **Hitting Time**

In the study of stochastic processes in mathematics, a hitting time (or first hit time) is the first time at which a given process “hits” a given subset of the state space. Exit times and return times are also examples of hitting times. …

# If you did not already know

**27**
*Monday*
Feb 2023

Posted What is ...

in