Neural Decomposition (ND) google
We present a neural network technique for the analysis and extrapolation of time-series data called Neural Decomposition (ND). Units with a sinusoidal activation function are used to perform a Fourier-like decomposition of training samples into a sum of sinusoids, augmented by units with nonperiodic activation functions to capture linear trends and other nonperiodic components. We show how careful weight initialization can be combined with regularization to form a simple model that generalizes well. Our method generalizes effectively on the Mackey-Glass series, a dataset of unemployment rates as reported by the U.S. Department of Labor Statistics, a time-series of monthly international airline passengers, the monthly ozone concentration in downtown Los Angeles, and an unevenly sampled time-series of oxygen isotope measurements from a cave in north India. We find that ND outperforms popular time-series forecasting techniques including LSTM, echo state networks, ARIMA, SARIMA, SVR with a radial basis function, and Gashler and Ashmore’s model. …

RLLChatbot google
Current conversational systems can follow simple commands and answer basic questions, but they have difficulty maintaining coherent and open-ended conversations about specific topics. Competitions like the Conversational Intelligence (ConvAI) challenge are being organized to push the research development towards that goal. This article presents in detail the RLLChatbot that participated in the 2017 ConvAI challenge. The goal of this research is to better understand how current deep learning and reinforcement learning tools can be used to build a robust yet flexible open domain conversational agent. We provide a thorough description of how a dialog system can be built and trained from mostly public-domain datasets using an ensemble model. The first contribution of this work is a detailed description and analysis of different text generation models in addition to novel message ranking and selection methods. Moreover, a new open-source conversational dataset is presented. Training on this data significantly improves the Recall@k score of the ranking and selection mechanisms compared to our baseline model responsible for selecting the message returned at each interaction. …

Multidimensional Scaling (MDS) google
Multidimensional scaling (MDS) is a means of visualizing the level of similarity of individual cases of a dataset. It refers to a set of related ordination techniques used in information visualization, in particular to display the information contained in a distance matrix. An MDS algorithm aims to place each object in N-dimensional space such that the between-object distances are preserved as well as possible. Each object is then assigned coordinates in each of the N dimensions. The number of dimensions of an MDS plot N can exceed 2 and is specified a priori. Choosing N=2 optimizes the object locations for a two-dimensional scatterplot. …

Binary Image SelectiON (BISON) google
Providing systems the ability to relate linguistic and visual content is one of the hallmarks of computer vision. Tasks such as image captioning and retrieval were designed to test this ability, but come with complex evaluation measures that gauge various other abilities and biases simultaneously. This paper presents an alternative evaluation task for visual-grounding systems: given a caption the system is asked to select the image that best matches the caption from a pair of semantically similar images. The system’s accuracy on this Binary Image SelectiON (BISON) task is not only interpretable, but also measures the ability to relate fine-grained text content in the caption to visual content in the images. We gathered a BISON dataset that complements the COCO Captions dataset and used this dataset in auxiliary evaluations of captioning and caption-based retrieval systems. While captioning measures suggest visual grounding systems outperform humans, BISON shows that these systems are still far away from human performance. …