Wishart Distribution
In statistics, the Wishart distribution is a generalization to multiple dimensions of the chi-squared distribution, or, in the case of non-integer degrees of freedom, of the gamma distribution. It is named in honor of John Wishart, who first formulated the distribution in 1928. It is a family of probability distributions defined over symmetric, nonnegative-definite matrix-valued random variables (‘random matrices’). These distributions are of great importance in the estimation of covariance matrices in multivariate statistics. In Bayesian statistics, the Wishart distribution is the conjugate prior of the inverse covariance-matrix of a multivariate-normal random-vector. …
Action Point Process VAE (APP-VAE)
We propose a novel probabilistic generative model for action sequences. The model is termed the Action Point Process VAE (APP-VAE), a variational auto-encoder that can capture the distribution over the times and categories of action sequences. Modeling the variety of possible action sequences is a challenge, which we show can be addressed via the APP-VAE’s use of latent representations and non-linear functions to parameterize distributions over which event is likely to occur next in a sequence and at what time. We empirically validate the efficacy of APP-VAE for modeling action sequences on the MultiTHUMOS and Breakfast datasets. …
KPTransfer
In this paper, we present a novel approach called KPTransfer for improving modeling performance for keypoint detection deep neural networks via domain transfer between different keypoint subsets. This approach is motivated by the notion that rich contextual knowledge can be transferred between different keypoint subsets representing separate domains. In particular, the proposed method takes into account various keypoint subsets/domains by sequentially adding and removing keypoints. Contextual knowledge is transferred between two separate domains via domain transfer. Experiments to demonstrate the efficacy of the proposed KPTransfer approach were performed for the task of human pose estimation on the MPII dataset, with comparisons against random initialization and frozen weight extraction configurations. Experimental results demonstrate the efficacy of performing domain transfer between two different joint subsets resulting in a PCKh improvement of up to 1.1 over random initialization on joints such as wrists and knee in certain joint splits with an overall PCKh improvement of 0.5. Domain transfer from a different set of joints not only results in improved accuracy but also results in faster convergence because of mutual co-adaptations of weights resulting from the contextual knowledge of the pose from a different set of joints. …
YASENN
We introduce a novel approach to feed-forward neural network interpretation based on partitioning the space of sequences of neuron activations. In line with this approach, we propose a model-specific interpretation method, called YASENN. Our method inherits many advantages of model-agnostic distillation, such as an ability to focus on the particular input region and to express an explanation in terms of features different from those observed by a neural network. Moreover, examination of distillation error makes the method applicable to the problems with low tolerance to interpretation mistakes. Technically, YASENN distills the network with an ensemble of layer-wise gradient boosting decision trees and encodes the sequences of neuron activations with leaf indices. The finite number of unique codes induces a partitioning of the input space. Each partition may be described in a variety of ways, including examination of an interpretable model (e.g. a logistic regression or a decision tree) trained to discriminate between objects of those partitions. Our experiments provide an intuition behind the method and demonstrate revealed artifacts in neural network decision making. …
If you did not already know
18 Saturday Feb 2023
Posted What is ...
in