CoCoA google
The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the framework to cover general non-strongly-convex regularizers, including L1-regularized problems like lasso, sparse logistic regression, and elastic net regularization, and show how earlier work can be derived as a special case. We provide convergence guarantees for the class of convex regularized loss minimization objectives, leveraging a novel approach in handling non-strongly-convex regularizers and non-smooth loss functions. The resulting framework has markedly improved performance over state-of-the-art methods, as we illustrate with an extensive set of experiments on real distributed datasets. …

Vision-and-Language Navigation (VLN) google
Vision-and-Language Navigation (VLN) is a natural language grounding task where agents have to interpret natural language instructions in the context of visual scenes in a dynamic environment to achieve prescribed navigation goals. Successful agents must have the ability to parse natural language of varying linguistic styles, ground them in potentially unfamiliar scenes, plan and react with ambiguous environmental feedback. …

Generalized Integrative Principal Component Analysis (GIPCA) google
High-dimensional multi-source data are encountered in many fields. Despite recent developments on the integrative dimension reduction of such data, most existing methods cannot easily accommodate data of multiple types (e.g., binary or count-valued). Moreover, multi-source data often have block-wise missing structure, i.e., data in one or more sources may be completely unobserved for a sample. The heterogeneous data types and presence of block-wise missing data pose significant challenges to the integration of multi-source data and further statistical analyses. In this paper, we develop a low-rank method, called Generalized Integrative Principal Component Analysis (GIPCA), for the simultaneous dimension reduction and imputation of multi-source block-wise missing data, where different sources may have different data types. We also devise an adapted BIC criterion for rank estimation. Comprehensive simulation studies demonstrate the efficacy of the proposed method in terms of rank estimation, signal recovery, and missing data imputation. We apply GIPCA to a mortality study. We achieve accurate block-wise missing data imputation and identify intriguing latent mortality rate patterns with sociological relevance. …

Consistent Generative Query Network google
Stochastic video prediction is usually framed as an extrapolation problem where the goal is to sample a sequence of consecutive future image frames conditioned on a sequence of observed past frames. For the most part, algorithms for this task generate future video frames sequentially in an autoregressive fashion, which is slow and requires the input and output to be consecutive. We introduce a model that overcomes these drawbacks — it learns to generate a global latent representation from an arbitrary set of frames within a video. This representation can then be used to simultaneously and efficiently sample any number of temporally consistent frames at arbitrary time-points in the video. We apply our model to synthetic video prediction tasks and achieve results that are comparable to state-of-the-art video prediction models. In addition, we demonstrate the flexibility of our model by applying it to 3D scene reconstruction where we condition on location instead of time. To the best of our knowledge, our model is the first to provide flexible and coherent prediction on stochastic video datasets, as well as consistent 3D scene samples. Please check the project website https://bit.ly/2jX7Vyu to view scene reconstructions and videos produced by our model. …