Aspect-Based Rating Prediction Model (AspeRa) google
We propose a novel end-to-end Aspect-based Rating Prediction model (AspeRa) that estimates user rating based on review texts for the items and at the same time discovers coherent aspects of reviews that can be used to explain predictions or profile users. The AspeRa model uses max-margin losses for joint item and user embedding learning and a dual-headed architecture; it significantly outperforms recently proposed state-of-the-art models such as DeepCoNN, HFT, NARRE, and TransRev on two real world data sets of user reviews. With qualitative examination of the aspects and quantitative evaluation of rating prediction models based on these aspects, we show how aspect embeddings can be used in a recommender system. …

GEP-PG google
In continuous action domains, standard deep reinforcement learning algorithms like DDPG suffer from inefficient exploration when facing sparse or deceptive reward problems. Conversely, evolutionary and developmental methods focusing on exploration like novelty search, quality-diversity or goal exploration processes are less sample efficient during exploitation. In this paper, we present the GEP-PG approach, taking the best of both worlds by sequentially combining two variants of a goal exploration process and two variants of DDPG. We study the learning performance of these components and their combination on a low dimensional deceptive reward problem and on the larger Half-Cheetah benchmark. Among other things, we show that DDPG fails on the former and that GEP-PG obtains performance above the state-of-the-art on the latter. …

Backdrop google
We introduce backdrop, a flexible and simple-to-implement method, intuitively described as dropout acting only along the backpropagation pipeline. Backdrop is implemented via one or more masking layers which are inserted at specific points along the network. Each backdrop masking layer acts as the identity in the forward pass, but randomly masks parts of the backward gradient propagation. Intuitively, inserting a backdrop layer after any convolutional layer leads to stochastic gradients corresponding to features of that scale. Therefore, backdrop is well suited for problems in which the data have a multi-scale, hierarchical structure. Backdrop can also be applied to problems with non-decomposable loss functions where standard SGD methods are not well suited. We perform a number of experiments and demonstrate that backdrop leads to significant improvements in generalization. …

Sparsified Capsule Network google
Capsule network has shown various advantages over convolutional neural network (CNN). It keeps more precise spatial information than CNN and uses equivariance instead of invariance during inference and highly potential to be a new effective tool for visual tasks. However, the current capsule networks have incompatible performance with CNN when facing datasets with background and complex target objects and are lacking in universal and efficient regularization method. We analyze the main reason of the incompatible performance as the conflict between information sensitiveness of capsule network and unreasonably higher activation value distribution of capsules in primary capsule layer. Correspondingly, we propose sparsified capsule network by sparsifying and restraining the activation value of capsules in primary capsule layer to suppress non-informative capsules and highlight discriminative capsules. In the experiments, the sparsified capsule network has achieved better performances on various mainstream datasets. In addition, the proposed sparsifying methods can be seen as a suitable, simple and efficient regularization method that can be generally used in capsule network. …