Apache Thrift google
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and seamlessly between C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js, Smalltalk, OCaml and Delphi and other languages. …

IBN-Net google
Convolutional neural networks (CNNs) have achieved great successes in many computer vision problems. Unlike existing works that designed CNN architectures to improve performance on a single task of a single domain and not generalizable, we present IBN-Net, a novel convolutional architecture, which remarkably enhances a CNN’s modeling ability on one domain (e.g. Cityscapes) as well as its generalization capacity on another domain (e.g. GTA5) without finetuning. IBN-Net carefully integrates Instance Normalization (IN) and Batch Normalization (BN) as building blocks, and can be wrapped into many advanced deep networks to improve their performances. This work has three key contributions. (1) By delving into IN and BN, we disclose that IN learns features that are invariant to appearance changes, such as colors, styles, and virtuality/reality, while BN is essential for preserving content related information. (2) IBN-Net can be applied to many advanced deep architectures, such as DenseNet, ResNet, ResNeXt, and SENet, and consistently improve their performance without increasing computational cost. (3) When applying the trained networks to new domains, e.g. from GTA5 to Cityscapes, IBN-Net achieves comparable improvements as domain adaptation methods, even without using data from the target domain. With IBN-Net, we won the 1st place on the WAD 2018 Challenge Drivable Area track, with an mIoU of 86.18%. …

UNet++ google
In this paper, we present UNet++, a new, more powerful architecture for medical image segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where the encoder and decoder sub-networks are connected through a series of nested, dense skip pathways. The re-designed skip pathways aim at reducing the semantic gap between the feature maps of the encoder and decoder sub-networks. We argue that the optimizer would deal with an easier learning task when the feature maps from the decoder and encoder networks are semantically similar. We have evaluated UNet++ in comparison with U-Net and wide U-Net architectures across multiple medical image segmentation tasks: nodule segmentation in the low-dose CT scans of chest, nuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively. …

Alpha Model-Agnostic Meta-Learning (Alpha MAML) google
Model-agnostic meta-learning (MAML) is a meta-learning technique to train a model on a multitude of learning tasks in a way that primes the model for few-shot learning of new tasks. The MAML algorithm performs well on few-shot learning problems in classification, regression, and fine-tuning of policy gradients in reinforcement learning, but comes with the need for costly hyperparameter tuning for training stability. We address this shortcoming by introducing an extension to MAML, called Alpha Model-agnostic meta-learning, to incorporate an online hyperparameter adaptation scheme that eliminates the need to tune meta-learning and learning rates. Our results with the Omniglot database demonstrate a substantial reduction in the need to tune MAML training hyperparameters and improvement to training stability with less sensitivity to hyperparameter choice. …