Datalog google
Datalog is a declarative logic programming language that syntactically is a subset of Prolog. It is often used as a query language for deductive databases. In recent years, Datalog has found new application in data integration, information extraction, networking, program analysis, security, and cloud computing. Its origins date back to the beginning of logic programming, but it became prominent as a separate area around 1977 when HervĂ© Gallaire and Jack Minker organized a workshop on logic and databases. David Maier is credited with coining the term Datalog. …

Random Geometric Graph (RGG) google
We propose an interdependent random geometric graph (RGG) model for interdependent networks. Based on this model, we study the robustness of two interdependent spatially embedded networks where interdependence exists between geographically nearby nodes in the two networks. We study the emergence of the giant mutual component in two interdependent RGGs as node densities increase, and define the percolation threshold as a pair of node densities above which the giant mutual component first appears. In contrast to the case for a single RGG, where the percolation threshold is a unique scalar for a given connection distance, for two interdependent RGGs, multiple pairs of percolation thresholds may exist, given that a smaller node density in one RGG may increase the minimum node density in the other RGG in order for a giant mutual component to exist. We derive analytical upper bounds on the percolation thresholds of two interdependent RGGs by discretization, and obtain $99\%$ confidence intervals for the percolation thresholds by simulation. Based on these results, we derive conditions for the interdependent RGGs to be robust under random failures and geographical attacks. …

Data Distillery google
The paper tackles the unsupervised estimation of the effective dimension of a sample of dependent random vectors. The proposed method uses the principal components (PC) decomposition of sample covariance to establish a low-rank approximation that helps uncover the hidden structure. The number of PCs to be included in the decomposition is determined via a Probabilistic Principal Components Analysis (PPCA) embedded in a penalized profile likelihood criterion. The choice of penalty parameter is guided by a data-driven procedure that is justified via analytical derivations and extensive finite sample simulations. Application of the proposed penalized PPCA is illustrated with three gene expression datasets in which the number of cancer subtypes is estimated from all expression measurements. The analyses point towards hidden structures in the data, e.g. additional subgroups, that could be of scientific interest. …

DeepInf google
Social and information networking activities such as on Facebook, Twitter, WeChat, and Weibo have become an indispensable part of our everyday life, where we can easily access friends’ behaviors and are in turn influenced by them. Consequently, an effective social influence prediction for each user is critical for a variety of applications such as online recommendation and advertising. Conventional social influence prediction approaches typically design various hand-crafted rules to extract user- and network-specific features. However, their effectiveness heavily relies on the knowledge of domain experts. As a result, it is usually difficult to generalize them into different domains. Inspired by the recent success of deep neural networks in a wide range of computing applications, we design an end-to-end framework, DeepInf, to learn users’ latent feature representation for predicting social influence. In general, DeepInf takes a user’s local network as the input to a graph neural network for learning her latent social representation. We design strategies to incorporate both network structures and user-specific features into convolutional neural and attention networks. Extensive experiments on Open Academic Graph, Twitter, Weibo, and Digg, representing different types of social and information networks, demonstrate that the proposed end-to-end model, DeepInf, significantly outperforms traditional feature engineering-based approaches, suggesting the effectiveness of representation learning for social applications. …