Divide and Recombine (D&R) google
Divide and recombine (D&R) is a statistical approach whose goal is to meet the challenges. In D&R, the data are divided into subsets, an analytic method is applied independently to each subset, and the outputs are recombined. This enables a large component of embarrassingly-parallel computation, the fastest parallel computation. DeltaRho open-source software implements D&R. At the front end, the analyst programs in R. The back end is the Hadoop distributed file system and parallel compute engine. The goals of D&R are the following: access to thousands of methods of machine learning, statistics, and data visualization; deep analysis of the data, which means analysis of the detailed data at their finest granularity; easy programming of analyses; and high computational performance. To succeed, D&R requires research in all of the technical areas of data science. Network cybersecurity and climate science are two subject-matter areas with big, complex data benefiting from D&R. …

Greedy Neural Architecture Search (GNAS) google
A key problem in deep multi-attribute learning is to effectively discover the inter-attribute correlation structures. Typically, the conventional deep multi-attribute learning approaches follow the pipeline of manually designing the network architectures based on task-specific expertise prior knowledge and careful network tunings, leading to the inflexibility for various complicated scenarios in practice. Motivated by addressing this problem, we propose an efficient greedy neural architecture search approach (GNAS) to automatically discover the optimal tree-like deep architecture for multi-attribute learning. In a greedy manner, GNAS divides the optimization of global architecture into the optimizations of individual connections step by step. By iteratively updating the local architectures, the global tree-like architecture gets converged where the bottom layers are shared across relevant attributes and the branches in top layers more encode attribute-specific features. Experiments on three benchmark multi-attribute datasets show the effectiveness and compactness of neural architectures derived by GNAS, and also demonstrate the efficiency of GNAS in searching neural architectures. …

High Utility Occupancy Pattern Mining (HUOPM) google
Mining useful patterns from varied types of databases is an important research topic, which has many real-life applications. Most studies have considered the frequency as sole interestingness measure for identifying high quality patterns. However, each object is different in nature. The relative importance of objects is not equal, in terms of criteria such as the utility, risk, or interest. Besides, another limitation of frequent patterns is that they generally have a low occupancy, i.e., they often represent small sets of items in transactions containing many items, and thus may not be truly representative of these transactions. To extract high quality patterns in real life applications, this paper extends the occupancy measure to also assess the utility of patterns in transaction databases. We propose an efficient algorithm named High Utility Occupancy Pattern Mining (HUOPM). It considers user preferences in terms of frequency, utility, and occupancy. A novel Frequency-Utility tree (FU-tree) and two compact data structures, called the utility-occupancy list and FU-table, are designed to provide global and partial downward closure properties for pruning the search space. The proposed method can efficiently discover the complete set of high quality patterns without candidate generation. Extensive experiments have been conducted on several datasets to evaluate the effectiveness and efficiency of the proposed algorithm. Results show that the derived patterns are intelligible, reasonable and acceptable, and that HUOPM with its pruning strategies outperforms the state-of-the-art algorithm, in terms of runtime and search space, respectively. …

Dynamic Panel Threshold Model google
Dynamic threshold panel model suggested by (Stephanie Kremer, Alexander Bick and Dieter Nautz (2013) <doi:10.1007/s00181-012-0553-9>) in which they extended the (Hansen (1999) <doi: 10.1016/S0304-4076(99)00025-1>) original static panel threshold estimation and the Caner and (Hansen (2004) <doi:10.1017/S0266466604205011>) cross-sectional instrumental variable threshold model, where generalized methods of moments type estimators are used. …