HardELiSH
Deep Neural Networks have been shown to be beneficial for a variety of tasks, in particular allowing for end-to-end learning and reducing the requirement for manual design decisions. However, still many parameters have to be chosen in advance, also raising the need to optimize them. One important, but often ignored system parameter is the selection of a proper activation function. Thus, in this paper we target to demonstrate the importance of activation functions in general and show that for different tasks different activation functions might be meaningful. To avoid the manual design or selection of activation functions, we build on the idea of genetic algorithms to learn the best activation function for a given task. In addition, we introduce two new activation functions, ELiSH and HardELiSH, which can easily be incorporated in our framework. In this way, we demonstrate for three different image classification benchmarks that different activation functions are learned, also showing improved results compared to typically used baselines. …
Total Length of Transition (TLT)
Without relevant human priors, neural networks may learn uninterpretable features. We propose Dynamics of Attention for Focus Transition (DAFT) as a human prior for machine reasoning. DAFT is a novel method that regularizes attention-based reasoning by modelling it as a continuous dynamical system using neural ordinary differential equations. As a proof of concept, we augment a state-of-the-art visual reasoning model with DAFT. Our experiments reveal that applying DAFT yields similar performance to the original model while using fewer reasoning steps, showing that it implicitly learns to skip unnecessary steps. We also propose a new metric, Total Length of Transition (TLT), which represents the effective reasoning step size by quantifying how much a given model’s focus drifts while reasoning about a question. We show that adding DAFT results in lower TLT, demonstrating that our method indeed obeys the human prior towards shorter reasoning paths in addition to producing more interpretable attention maps. …
Label-Noise Robust GAN (rGAN)
Generative adversarial networks (GANs) are a framework that learns a generative distribution through adversarial training. Recently, their class conditional extensions (e.g., conditional GAN (cGAN) and auxiliary classifier GAN (AC-GAN)) have attracted much attention owing to their ability to learn the disentangled representations and to improve the training stability. However, their training requires the availability of large-scale accurate class-labeled data, which are often laborious or impractical to collect in a real-world scenario. To remedy the drawback, we propose a novel family of GANs called label-noise robust GANs (rGANs), which, by incorporating a noise transition model, can learn a clean label conditional generative distribution even when training labels are noisy. In particular, we propose two variants: rAC-GAN, which is a bridging model between AC-GAN and the noise-robust classification model, and rcGAN, which is an extension of cGAN and is guaranteed to learn the clean label conditional distribution in an optimal condition. In addition to providing the theoretical background, we demonstrate the effectiveness of our models through extensive experiments using diverse GAN configurations, various noise settings, and multiple evaluation metrics (in which we tested 402 patterns in total). …
SEALion
We present SEALion: an extensible framework for privacy-preserving machine learning with homomorphic encryption. It allows one to learn deep neural networks that can be seamlessly utilized for prediction on encrypted data. The framework consists of two layers: the first is built upon TensorFlow and SEAL and exposes standard algebra and deep learning primitives; the second implements a Keras-like syntax for training and inference with neural networks. Given a required level of security, a user is abstracted from the details of the encoding and the encryption scheme, allowing quick prototyping. We present two applications that exemplifying the extensibility of our proposal, which are also of independent interest: i) improving efficiency of neural network inference by an activity sparsifier and ii) transfer learning by querying a server-side Variational AutoEncoder that can handle encrypted data. …
If you did not already know
14 Saturday Jan 2023
Posted What is ...
in