Convolutional Self-Attention Network (CSAN)
Self-attention networks (SANs) have drawn increasing interest due to their high parallelization in computation and flexibility in modeling dependencies. SANs can be further enhanced with multi-head attention by allowing the model to attend to information from different representation subspaces. In this work, we propose novel convolutional self-attention networks, which offer SANs the abilities to 1) strengthen dependencies among neighboring elements, and 2) model the interaction between features extracted by multiple attention heads. Experimental results of machine translation on different language pairs and model settings show that our approach outperforms both the strong Transformer baseline and other existing models on enhancing the locality of SANs. Comparing with prior studies, the proposed model is parameter free in terms of introducing no more parameters. …
Rank-Regret Representative (RRR)
We propose the rank-regret representative as a way of choosing a small subset of the database guaranteed to contain at least one of the top-k of any linear ranking function. We provide the techniques for finding such set and conduct experiments on real datasets to confirm the efficiency and effectiveness of our proposal. …
kubeCDN
A self-hosted content delivery network based on Kubernetes. Easily setup Kubernetes clusters in multiple AWS regions and deploy resilient and reliable services to a global user base within minutes. This project was developed by Ilhaan Rasheed during his tenure as a DevOps Engineering Fellow at Insight. The capabilities of this project have been demonstrated using video streaming as an example. …
False Positive Control Lasso
In high dimensional settings where a small number of regressors are expected to be important, the Lasso estimator can be used to obtain a sparse solution vector with the expectation that most of the non-zero coefficients are associated with true signals. While several approaches have been developed to control the inclusion of false predictors with the Lasso, these approaches are limited by relying on asymptotic theory, having to empirically estimate terms based on theoretical quantities, assuming a continuous response class with Gaussian noise and design matrices, or high computation costs. In this paper we show how: (1) an existing model (the SQRT-Lasso) can be recast as a method of controlling the number of expected false positives, (2) how a similar estimator can used for all other generalized linear model classes, and (3) this approach can be fit with existing fast Lasso optimization solvers. Our justification for false positive control using randomly weighted self-normalized sum theory is to our knowledge novel. Moreover, our estimator’s properties hold in finite samples up to some approximation error which we find in practical settings to be negligible under a strict mutual incoherence condition. …
If you did not already know
10 Tuesday Jan 2023
Posted What is ...
in