**Semi-Autoregressive Transformer (SAT)**

Existing approaches to neural machine translation are typically autoregressive models. While these models attain state-of-the-art translation quality, they are suffering from low parallelizability and thus slow at decoding long sequences. In this paper, we propose a novel model for fast sequence generation — the semi-autoregressive Transformer (SAT). The SAT keeps the autoregressive property in global but relieves in local and thus are able to produce multiple successive words in parallel at each time step. Experiments conducted on English-German and Chinese-English translation tasks show that the SAT achieves a good balance between translation quality and decoding speed. On WMT’14 English-German translation, the SAT achieves 5.58$\times$ speedup while maintaining 88\% translation quality, significantly better than the previous non-autoregressive methods. When produces two words at each time step, the SAT is almost lossless (only 1\% degeneration in BLEU score). … **Beetle Swarm Optimization Algorithm**

In this paper, a new meta-heuristic algorithm, called beetle swarm optimization algorithm, is proposed by enhancing the performance of swarm optimization through beetle foraging principles. The performance of 23 benchmark functions is tested and compared with widely used algorithms, including particle swarm optimization algorithm, genetic algorithm (GA) and grasshopper optimization algorithm . Numerical experiments show that the beetle swarm optimization algorithm outperforms its counterparts. Besides, to demonstrate the practical impact of the proposed algorithm, two classic engineering design problems, namely, pressure vessel design problem and himmelblaus optimization problem, are also considered and the proposed beetle swarm optimization algorithm is shown to be competitive in those applications. … **Partitioning Around Medoids (PAM)**

The PAM algorithm was developed by Leonard Kaufman and Peter J. Rousseeuw, and this algorithm is very similar to K-means, mostly because both are partitional algorithms, in other words, both break the datasets into groups, and both works trying to minimize the error, but PAM works with Medoids, that are an entity of the dataset that represent the group in which it is inserted, and K-means works with Centroids, that are artificially created entity that represent its cluster.

The PAM algorithm partitionates a dataset of n objects into a number k of clusters, where both the dataset and the number k is an input of the algorithm. This algorithm works with a matrix of dissimilarity, where its goal is to minimize the overall dissimilarity between the representants of each cluster and its members. … **Functional Target Controllability**

In this paper we consider the problem of controlling a limited number of target nodes of a network. Equivalently, we can see this problem as controlling the target variables of a structured system, where the state variables of the system are associated to the nodes of the network. We deal with this problem from a different point of view as compared to most recent literature. Indeed, instead of considering controllability in the Kalman sense, that is, as the ability to drive the target states to a desired value, we consider the stronger requirement of driving the target variables as time functions. The latter notion is called functional target controllability. We think that restricting the controllability requirement to a limited set of important variables justifies using a more accurate notion of controllability for these variables. Remarkably, the notion of functional controllability allows formulating very simple graphical conditions for target controllability, in the spirit of the structural approach to controllability. The functional approach enables us, moreover, to determine the smallest set of steering nodes that need to be actuated to ensure target controllability, where these steering nodes are constrained to belong to a given set. We show that such a smallest set can be found in polynomial time. We are also able to classify the possible actuated variables in terms of their importance with respect to the functional target controllability problem. …

# If you did not already know

**29**
*Thursday*
Dec 2022

Posted What is ...

in