Regret With Rolling Window google
Nowadays, online learning is an appealing learning paradigm, which is of great interest in practice due to the recent emergence of large scale applications such as online advertising placement and online web ranking. Standard online learning assumes a finite number of samples while in practice data is streamed infinitely. In such a setting gradient descent with a diminishing learning rate does not work. We first introduce regret with rolling window, a new performance metric for online streaming learning, which measures the performance of an algorithm on every fixed number of contiguous samples. At the same time, we propose a family of algorithms based on gradient descent with a constant or adaptive learning rate and provide very technical analyses establishing regret bound properties of the algorithms. We cover the convex setting showing the regret of the order of the square root of the size of the window in the constant and dynamic learning rate scenarios. Our proof is applicable also to the standard online setting where we provide the first analysis of the same regret order (the previous proofs have flaws). We also study a two layer neural network setting with ReLU activation. In this case we establish that if initial weights are close to a stationary point, the same square root regret bound is attainable. We conduct computational experiments demonstrating a superior performance of the proposed algorithms. …

Degradation Data Analysis google
Given that products are more frequently being designed with higher reliability and developed in a shorter amount of time, it is often not possible to test new designs to failure under normal operating conditions. In some cases, it is possible to infer the reliability behavior of unfailed test samples with only the accumulated test time information and assumptions about the distribution. However, this generally leads to a great deal of uncertainty in the results. Another option in this situation is the use of degradation analysis. Degradation analysis involves the measurement of performance data that can be directly related to the presumed failure of the product in question. Many failure mechanisms can be directly linked to the degradation of part of the product, and degradation analysis allows the analyst to extrapolate to an assumed failure time based on the measurements of degradation over time. …

Online FAult Detection (FADO) google
This paper proposes and studies a detection technique for adversarial scenarios (dubbed deterministic detection). This technique provides an alternative detection methodology in case the usual stochastic methods are not applicable: this can be because the studied phenomenon does not follow a stochastic sampling scheme, samples are high-dimensional and subsequent multiple-testing corrections render results overly conservative, sample sizes are too low for asymptotic results (as e.g. the central limit theorem) to kick in, or one cannot allow for the small probability of failure inherent to stochastic approaches. This paper instead designs a method based on insights from machine learning and online learning theory: this detection algorithm – named Online FAult Detection (FADO) – comes with theoretical guarantees of its detection capabilities. A version of the margin is found to regulate the detection performance of FADO. A precise expression is derived for bounding the performance, and experimental results are presented assessing the influence of involved quantities. A case study of scene detection is used to illustrate the approach. The technology is closely related to the linear perceptron rule, inherits its computational attractiveness and flexibility towards various extensions. …

CURIOUS google
In open-ended and changing environments, agents face a wide range of potential tasks that may or may not come with associated reward functions. Such autonomous learning agents must be able to generate their own tasks through a process of intrinsically motivated exploration, some of which might prove easy, others impossible. For this reason, they should be able to actively select which task to practice at any given moment, to maximize their overall mastery on the set of learnable tasks. This paper proposes CURIOUS, an extension of Universal Value Function Approximators that enables intrinsically motivated agents to learn to achieve both multiple tasks and multiple goals within a unique policy, leveraging hindsight learning. Agents focus on achievable tasks first, using an automated curriculum learning mechanism that biases their attention towards tasks maximizing the absolute learning progress. This mechanism provides robustness to catastrophic forgetting (by refocusing on tasks where performance decreases) and distracting tasks (by avoiding tasks with no absolute learning progress). Furthermore, we show that having two levels of parameterization (tasks and goals within tasks) enables more efficient learning of skills in an environment with a modular physical structure (e.g. multiple objects) as compared to flat, goal-parameterized RL with hindsight experience replay. …