Extreme Gradient Boosting
Extreme Gradient Boosting, which is an efficient implementation of gradient boosting framework. …
Temporal Walk
Networks evolve continuously over time with the addition, deletion, and changing of links and nodes. Such temporal networks (or edge streams) consist of a sequence of timestamped edges and are seemingly ubiquitous. Despite the importance of accurately modeling the temporal information, most embedding methods ignore it entirely or approximate the temporal network using a sequence of static snapshot graphs. In this work, we introduce the notion of \emph{temporal walks} for learning dynamic embeddings from temporal networks. Temporal walks capture the temporally valid interactions (\eg, flow of information, spread of disease) in the dynamic network in a lossless fashion. Based on the notion of temporal walks, we describe a general class of embeddings called continuous-time dynamic network embeddings (CTDNEs) that completely avoid the issues and problems that arise when approximating the temporal network as a sequence of static snapshot graphs. Unlike previous work, CTDNEs learn dynamic node embeddings directly from the temporal network at the finest temporal granularity and thus use only temporally valid information. As such CTDNEs naturally support online learning of the node embeddings in a streaming real-time fashion. The experiments demonstrate the effectiveness of this class of embedding methods for prediction in temporal networks. …
Knowledge Based end-to-end Memory Network (KOBE)
End-to-end dialog systems have become very popular because they hold the promise of learning directly from human to human dialog interaction. Retrieval and Generative methods have been explored in this area with mixed results. A key element that is missing so far, is the incorporation of a-priori knowledge about the task at hand. This knowledge may exist in the form of structured or unstructured information. As a first step towards this direction, we present a novel approach, Knowledge based end-to-end memory networks (KB-memN2N), which allows special handling of named entities for goal-oriented dialog tasks. We present results on two datasets, DSTC6 challenge dataset and dialog bAbI tasks. …
Social Explorative Attention Network (SEAN)
An effective content recommendation in modern social media platforms should benefit both creators to bring genuine benefits to them and consumers to help them get really interesting content. In this paper, we propose a model called Social Explorative Attention Network (SEAN) for content recommendation. SEAN uses a personalized content recommendation model to encourage personal interests driven recommendation. Moreover, SEAN allows the personalization factors to attend to users’ higher-order friends on the social network to improve the accuracy and diversity of recommendation results. Constructing two datasets from a popular decentralized content distribution platform, Steemit, we compare SEAN with state-of-the-art CF and content based recommendation approaches. Experimental results demonstrate the effectiveness of SEAN in terms of both Gini coefficients for recommendation equality and F1 scores for recommendation performance. …
If you did not already know
24 Saturday Dec 2022
Posted What is ...
in