Syntactic Scaffold google
We introduce the syntactic scaffold, an approach to incorporating syntactic information into semantic tasks. Syntactic scaffolds avoid expensive syntactic processing at runtime, only making use of a treebank during training, through a multitask objective. We improve over strong baselines on PropBank semantics, frame semantics, and coreference resolution, achieving competitive performance on all three tasks. …

dypro google
Neural program embedding has shown potential in aiding the analysis of large-scale, complicated software. Newly proposed deep neural architectures pride themselves on learning program semantics rather than superficial syntactic features. However, by considering the source code only, the vast majority of neural networks do not capture a deep, precise representation of program semantics. In this paper, we present \dypro, a novel deep neural network that learns from program execution traces. Compared to the prior dynamic models, not only is \dypro capable of generalizing across multiple executions for learning a program’s dynamic semantics in its entirety, but \dypro is also more efficient when dealing with programs yielding long execution traces. For evaluation, we task \dypro with semantic classification (\ie categorizing programs based on their semantics) and compared it against two prominent static models: Gated Graph Neural Network and TreeLSTM. We find that \dypro achieves the highest prediction accuracy among all models. To further reveal the capacity of all aforementioned deep neural architectures, we examine if the models can learn to detect deeper semantic properties of a program. In particular given a task of recognizing loop invariants, we show \dypro beats all static models by a wide margin. …

Batch-Mode Active Learning google
Recently, Convolutional Neural Networks (CNNs) have shown unprecedented success in the field of computer vision, especially on challenging image classification tasks by relying on a universal approach, i.e., training a deep model on a massive dataset of supervised examples. While unlabeled data are often an abundant resource, collecting a large set of labeled data, on the other hand, are very expensive, which often require considerable human efforts. One way to ease out this is to effectively select and label highly informative instances from a pool of unlabeled data (i.e., active learning). This paper proposed a new method of batch-mode active learning, Dual Active Sampling(DAS), which is based on a simple assumption, if two deep neural networks (DNNs) of the same structure and trained on the same dataset give significantly different output for a given sample, then that particular sample should be picked for additional training. While other state of the art methods in this field usually require intensive computational power or relying on a complicated structure, DAS is simpler to implement and, managed to get improved results on Cifar-10 with preferable computational time compared to the core-set method. …

Projection Weighted Canonical Correlation Analysis (projection weighted CCA) google
Comparing different neural network representations and determining how representations evolve over time remain challenging open questions in our understanding of the function of neural networks. Comparing representations in neural networks is fundamentally difficult as the structure of representations varies greatly, even across groups of networks trained on identical tasks, and over the course of training. Here, we develop projection weighted CCA (Canonical Correlation Analysis) as a tool for understanding neural networks, building off of SVCCA, a recently proposed method. We first improve the core method, showing how to differentiate between signal and noise, and then apply this technique to compare across a group of CNNs, demonstrating that networks which generalize converge to more similar representations than networks which memorize, that wider networks converge to more similar solutions than narrow networks, and that trained networks with identical topology but different learning rates converge to distinct clusters with diverse representations. We also investigate the representational dynamics of RNNs, across both training and sequential timesteps, finding that RNNs converge in a bottom-up pattern over the course of training and that the hidden state is highly variable over the course of a sequence, even when accounting for linear transforms. Together, these results provide new insights into the function of CNNs and RNNs, and demonstrate the utility of using CCA to understand representations. …