Radial Prediction Layer (RPL)
For a broad variety of critical applications, it is essential to know how confident a classification prediction is. In this paper, we discuss the drawbacks of softmax to calculate class probabilities and to handle uncertainty in Bayesian neural networks. We introduce a new kind of prediction layer called radial prediction layer (RPL) to overcome these issues. In contrast to the softmax classification, RPL is based on the open-world assumption. Therefore, the class prediction probabilities are much more meaningful to assess the uncertainty concerning the novelty of the input. We show that neural networks with RPLs can be learned in the same way as neural networks using softmax. On a 2D toy data set (spiral data), we demonstrate the fundamental principles and advantages. On the real-world ImageNet data set, we show that the open-world properties are beneficially fulfilled. Additionally, we show that RPLs are less sensible to adversarial attacks on the MNIST data set. Due to its features, we expect RPL to be beneficial in a broad variety of applications, especially in critical environments, such as medicine or autonomous driving. …
Stripe
Hardware architectures and machine learning (ML) libraries evolve rapidly. Traditional compilers often fail to generate high-performance code across the spectrum of new hardware offerings. To mitigate, engineers develop hand-tuned kernels for each ML library update and hardware upgrade. Unfortunately, this approach requires excessive engineering effort to scale or maintain with any degree of state-of-the-art performance. Here we present a Nested Polyhedral Model for representing highly parallelizable computations with limited dependencies between iterations. This model provides an underlying framework for an intermediate representation (IR) called Stripe, amenable to standard compiler techniques while naturally modeling key aspects of modern ML computing. Stripe represents parallelism, efficient memory layout, and multiple compute units at a level of abstraction amenable to automatic optimization. We describe how Stripe enables a compiler for ML in the style of LLVM that allows independent development of algorithms, optimizations, and hardware accelerators. We also discuss the design exploration advantages of Stripe over kernel libraries and schedule-based or schedule-space-based code generation. …
Graph Augmented Memory Network (GAMENet)
Recent progress in deep learning is revolutionizing the healthcare domain including providing solutions to medication recommendations, especially recommending medication combination for patients with complex health conditions. Existing approaches either do not customize based on patient health history, or ignore existing knowledge on drug-drug interactions (DDI) that might lead to adverse outcomes. To fill this gap, we propose the Graph Augmented Memory Networks (GAMENet), which integrates the drug-drug interactions knowledge graph by a memory module implemented as a graph convolutional networks, and models longitudinal patient records as the query. It is trained end-to-end to provide safe and personalized recommendation of medication combination. We demonstrate the effectiveness and safety of GAMENet by comparing with several state-of-the-art methods on real EHR data. GAMENet outperformed all baselines in all effectiveness measures, and also achieved 3.60% DDI rate reduction from existing EHR data. …
Semi-Supervised Novelty Detection (SSND)
A common setting for novelty detection assumes that labeled examples from the nominal class are available, but that labeled examples of novelties are unavailable. The standard (inductive) approach is to declare novelties where the nominal density is low, which reduces the problem to density level set estimation. In this paper, we consider the setting where an unlabeled and possibly contaminated sample is also available at learning time. We argue that novelty detection in this semi-supervised setting is naturally solved by a general reduction to a binary classification problem. In particular, a detector with a desired false positive rate can be achieved through a reduction to Neyman-Pearson classification. Unlike the inductive approach, semi-supervised novelty detection (SSND) yields detectors that are optimal (e.g., statistically consistent) regardless of the distribution on novelties. Therefore, in novelty detection, unlabeled data have a substantial impact on the theoretical properties of the decision rule. We validate the practical utility of SSND with an extensive experimental study. We also show that SSND provides distribution-free, learning-theoretic solutions to two well known problems in hypothesis testing. First, our results provide a general solution to the general two-sample problem, that is, the problem of determining whether two random samples arise from the same distribution. Second, a specialization of SSND coincides with the standard p-value approach to multiple testing under the so-called random effects model. Unlike standard rejection regions based on thresholded p-values, the general SSND framework allows for adaptation to arbitrary alternative distributions in multiple dimensions …
If you did not already know
17 Saturday Dec 2022
Posted What is ...
in