Probability Mass Function (PMF)
In probability theory and statistics, a probability mass function (pmf) is a function that gives the probability that a discrete random variable is exactly equal to some value. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalar or multivariate random variables whose domain is discrete. A probability mass function differs from a probability density function (pdf) in that the latter is associated with continuous rather than discrete random variables; the values of the latter are not probabilities as such: a pdf must be integrated over an interval to yield a probability. …
Massively-Parallel Neural Array (MPNA)
The state-of-the-art accelerators for Convolutional Neural Networks (CNNs) typically focus on accelerating only the convolutional layers, but do not prioritize the fully-connected layers much. Hence, they lack a synergistic optimization of the hardware architecture and diverse dataflows for the complete CNN design, which can provide a higher potential for performance/energy efficiency. Towards this, we propose a novel Massively-Parallel Neural Array (MPNA) accelerator that integrates two heterogeneous systolic arrays and respective highly-optimized dataflow patterns to jointly accelerate both the convolutional (CONV) and the fully-connected (FC) layers. Besides fully-exploiting the available off-chip memory bandwidth, these optimized dataflows enable high data-reuse of all the data types (i.e., weights, input and output activations), and thereby enable our MPNA to achieve high energy savings. We synthesized our MPNA architecture using the ASIC design flow for a 28nm technology, and performed functional and timing validation using multiple real-world complex CNNs. MPNA achieves 149.7GOPS/W at 280MHz and consumes 239mW. Experimental results show that our MPNA architecture provides 1.7x overall performance improvement compared to state-of-the-art accelerator, and 51% energy saving compared to the baseline architecture. …
Capuchin
Fairness is increasingly recognized as a critical component of machine learning systems. However, it is the underlying data on which these systems are trained that often reflect discrimination, suggesting a database repair problem. Existing treatments of fairness rely on statistical correlations that can be fooled by statistical anomalies, such as Simpson’s paradox. Proposals for causality-based definitions of fairness can correctly model some of these situations, but they require specification of the underlying causal models. In this paper, we formalize the situation as a database repair problem, proving sufficient conditions for fair classifiers in terms of admissible variables as opposed to a complete causal model. We show that these conditions correctly capture subtle fairness violations. We then use these conditions as the basis for database repair algorithms that provide provable fairness guarantees about classifiers trained on their training labels. We evaluate our algorithms on real data, demonstrating improvement over the state of the art on multiple fairness metrics proposed in the literature while retaining high utility. …
Deep Audio-Visual Embedding (DAVE)
This paper presents a conceptually simple and effective Deep Audio-Visual Embedding for dynamic saliency prediction dubbed “DAVE’. Several behavioral studies have shown a strong relation between auditory and visual cues for guiding gaze during scene free viewing. The existing video saliency models, however, only consider visual cues for predicting saliency over videos and neglect the auditory information that is ubiquitous in dynamic scenes. We propose a multimodal saliency model that utilizes audio and visual information for predicting saliency in videos. Our model consists of a two-stream encoder and a decoder. First, auditory and visual information are mapped into a feature space using 3D Convolutional Neural Networks (3D CNNs). Then, a decoder combines the features and maps them to a final saliency map. To train such model, data from various eye tracking datasets containing video and audio are pulled together. We further categorised videos into `social’, `nature’, and `miscellaneous’ classes to analyze the models over different content types. Several analyses show that our audio-visual model outperforms video-based models significantly over all scores; overall and over individual categories. Contextual analysis of the model performance over the location of sound source reveals that the audio-visual model behaves similar to humans in attending to the location of sound source. Our endeavour demonstrates that audio is an important signal that can boost video saliency prediction and help getting closer to human performance. …
If you did not already know
17 Saturday Dec 2022
Posted What is ...
in