Bayesian Neural Network (BNN)
This paper describes and discusses Bayesian Neural Network (BNN). The paper showcases a few different applications of them for classification and regression problems. BNNs are comprised of a Probabilistic Model and a Neural Network. The intent of such a design is to combine the strengths of Neural Networks and Stochastic modeling. Neural Networks exhibit continuous function approximator capabilities. Stochastic models allow direct specification of a model with known interaction between parameters to generate data. During the prediction phase, stochastic models generate a complete posterior distribution and produce probabilistic guarantees on the predictions. Thus BNNs are a unique combination of neural network and stochastic models with the stochastic model forming the core of this integration. BNNs can then produce probabilistic guarantees on it’s predictions and also generate the distribution of parameters that it has learnt from the observations. That means, in the parameter space, one can deduce the nature and shape of the neural network’s learnt parameters. These two characteristics makes them highly attractive to theoreticians as well as practitioners. Recently there has been a lot of activity in this area, with the advent of numerous probabilistic programming libraries such as: PyMC3, Edward, Stan etc. Further this area is rapidly gaining ground as a standard machine learning approach for numerous problems …
Correlation Clustering
Correlation Clustering is a powerful graph partitioning model that aims to cluster items based on the notion of similarity between items. An instance of the Correlation Clustering problem consists of a graph $G$ (not necessarily complete) whose edges are labeled by a binary classifier as ‘similar’ and ‘dissimilar’. Classically, we are tasked with producing a clustering that minimizes the number of disagreements: an edge is in disagreement if it is a ‘similar’ edge and is present across clusters or if it is a ‘dissimilar’ edge and is present within a cluster. Define the disagreements vector to be an $n$ dimensional vector indexed by the vertices, where the $v$-th index is the number of disagreements at vertex $v$. Recently, Puleo and Milenkovic (ICML ’16) initiated the study of the Correlation Clustering framework in which the objectives were more general functions of the disagreements vector. …
activity2vec
Sufficient physical activity and restful sleep play a major role in the prevention and cure of many chronic conditions. Being able to proactively screen and monitor such chronic conditions would be a big step forward for overall health. The rapid increase in the popularity of wearable devices provides a significant new source, making it possible to track the user’s lifestyle real-time. In this paper, we propose a novel unsupervised representation learning technique called activity2vec that learns and ‘summarizes’ the discrete-valued activity time-series. It learns the representations with three components: (i) the co-occurrence and magnitude of the activity levels in a time-segment, (ii) neighboring context of the time-segment, and (iii) promoting subject-invariance with adversarial training. We evaluate our method on four disorder prediction tasks using linear classifiers. Empirical evaluation demonstrates that our proposed method scales and performs better than many strong baselines. The adversarial regime helps improve the generalizability of our representations by promoting subject invariant features. We also show that using the representations at the level of a day works the best since human activity is structured in terms of daily routines …
REINFORCE
Industrial recommender systems deal with extremely large action spaces — many millions of items to recommend. Moreover, they need to serve billions of users, who are unique at any point in time, making a complex user state space. Luckily, huge quantities of logged implicit feedback (e.g., user clicks, dwell time) are available for learning. Learning from the logged feedback is however subject to biases caused by only observing feedback on recommendations selected by the previous versions of the recommender. In this work, we present a general recipe of addressing such biases in a production top-K recommender system at Youtube, built with a policy-gradient-based algorithm, i.e. REINFORCE. The contributions of the paper are: (1) scaling REINFORCE to a production recommender system with an action space on the orders of millions; (2) applying off-policy correction to address data biases in learning from logged feedback collected from multiple behavior policies; (3) proposing a novel top-K off-policy correction to account for our policy recommending multiple items at a time; (4) showcasing the value of exploration. We demonstrate the efficacy of our approaches through a series of simulations and multiple live experiments on Youtube. …
If you did not already know
14 Wednesday Dec 2022
Posted What is ...
in