APRIL google
We propose a method to perform automatic document summarisation without using reference summaries. Instead, our method interactively learns from users’ preferences. The merit of preference-based interactive summarisation is that preferences are easier for users to provide than reference summaries. Existing preference-based interactive learning methods suffer from high sample complexity, i.e. they need to interact with the oracle for many rounds in order to converge. In this work, we propose a new objective function, which enables us to leverage active learning, preference learning and reinforcement learning techniques in order to reduce the sample complexity. Both simulation and real-user experiments suggest that our method significantly advances the state of the art. Our source code is freely available at https://…/emnlp2018-april.

Tile2Vec google
Remote sensing lacks methods like the word vector representations and pre-trained networks that significantly boost performance across a wide range of natural language and computer vision tasks. To fill this gap, we introduce Tile2Vec, an unsupervised representation learning algorithm that extends the distributional hypothesis from natural language — words appearing in similar contexts tend to have similar meanings — to geospatial data. We demonstrate empirically that Tile2Vec learns semantically meaningful representations on three datasets. Our learned representations significantly improve performance in downstream classification tasks and similarly to word vectors, visual analogies can be obtained by simple arithmetic in the latent space. …

Semantically Informed Visual Odometry and Mapping (SIVO) google
In order to facilitate long-term localization using a visual simultaneous localization and mapping (SLAM) algorithm, careful feature selection is required such that reference points persist over long durations and the runtime and storage complexity of the algorithm remain consistent. We present SIVO (Semantically Informed Visual Odometry and Mapping), a novel information-theoretic feature selection method for visual SLAM which incorporates machine learning and neural network uncertainty into the feature selection pipeline. Our algorithm selects points which provide the highest reduction in Shannon entropy between the entropy of the current state, and the joint entropy of the state given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. This feature selection strategy generates a sparse map suitable for long-term localization, as each selected feature significantly reduces the uncertainty of the vehicle state and has been detected to be a static object (building, traffic sign, etc.) repeatedly with a high confidence. The KITTI odometry dataset is used to evaluate our method, and we also compare our results against ORB_SLAM2. Overall, SIVO performs comparably to ORB_SLAM2 (average of 0.17% translation error difference, 6.2 x 10^(-5) deg/m rotation error difference) while reducing the map size by 69%. …

ruptures google
ruptures is a Python library for offline change point detection. This package provides methods for the analysis and segmentation of non-stationary signals. Implemented algorithms include exact and approximate detection for various parametric and non-parametric models. ruptures focuses on ease of use by providing a well-documented and consistent interface. In addition, thanks to its modular structure, different algorithms and models can be connected and extended within this package. …