Defensive Quantization google
Neural network quantization is becoming an industry standard to efficiently deploy deep learning models on hardware platforms, such as CPU, GPU, TPU, and FPGAs. However, we observe that the conventional quantization approaches are vulnerable to adversarial attacks. This paper aims to raise people’s awareness about the security of the quantized models, and we designed a novel quantization methodology to jointly optimize the efficiency and robustness of deep learning models. We first conduct an empirical study to show that vanilla quantization suffers more from adversarial attacks. We observe that the inferior robustness comes from the error amplification effect, where the quantization operation further enlarges the distance caused by amplified noise. Then we propose a novel Defensive Quantization (DQ) method by controlling the Lipschitz constant of the network during quantization, such that the magnitude of the adversarial noise remains non-expansive during inference. Extensive experiments on CIFAR-10 and SVHN datasets demonstrate that our new quantization method can defend neural networks against adversarial examples, and even achieves superior robustness than their full-precision counterparts while maintaining the same hardware efficiency as vanilla quantization approaches. As a by-product, DQ can also improve the accuracy of quantized models without adversarial attack. …

DensSiam google
Convolutional Siamese neural networks have been recently used to track objects using deep features. Siamese architecture can achieve real time speed, however it is still difficult to find a Siamese architecture that maintains the generalization capability, high accuracy and speed while decreasing the number of shared parameters especially when it is very deep. Furthermore, a conventional Siamese architecture usually processes one local neighborhood at a time, which makes the appearance model local and non-robust to appearance changes. To overcome these two problems, this paper proposes DensSiam, a novel convolutional Siamese architecture, which uses the concept of dense layers and connects each dense layer to all layers in a feed-forward fashion with a similarity-learning function. DensSiam also includes a Self-Attention mechanism to force the network to pay more attention to the non-local features during offline training. Extensive experiments are performed on four tracking benchmarks: OTB2013 and OTB2015 for validation set; and VOT2015, VOT2016 and VOT2017 for testing set. The obtained results show that DensSiam achieves superior results on these benchmarks compared to other current state-of-the-art methods. …

Property Graph google
The term property graph has come to denote an attributed, multi-relational graph. That is, a graph where the edges are labeled and both vertices and edges can have any number of key/value properties associated with them. …

Shakeout google
Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. Dropout has played an essential role in many successful deep neural networks, by inducing regularization in the model training. In this paper, we present a new regularized training approach: Shakeout. Instead of randomly discarding units as Dropout does at the training stage, Shakeout randomly chooses to enhance or reverse each unit’s contribution to the next layer. This minor modification of Dropout has the statistical trait: the regularizer induced by Shakeout adaptively combines $L_0$, $L_1$ and $L_2$ regularization terms. Our classification experiments with representative deep architectures on image datasets MNIST, CIFAR-10 and ImageNet show that Shakeout deals with over-fitting effectively and outperforms Dropout. We empirically demonstrate that Shakeout leads to sparser weights under both unsupervised and supervised settings. Shakeout also leads to the grouping effect of the input units in a layer. Considering the weights in reflecting the importance of connections, Shakeout is superior to Dropout, which is valuable for the deep model compression. Moreover, we demonstrate that Shakeout can effectively reduce the instability of the training process of the deep architecture. …