Hierarchical Planning and Reinforcement Learning (HIP-RL) google
Long-term planning poses a major difficulty to many reinforcement learning algorithms. This problem becomes even more pronounced in dynamic visual environments. In this work we propose Hierarchical Planning and Reinforcement Learning (HIP-RL), a method for merging the benefits and capabilities of Symbolic Planning with the learning abilities of Deep Reinforcement Learning. We apply HIPRL to the complex visual tasks of interactive question answering and visual semantic planning and achieve state-of-the-art results on three challenging datasets all while taking fewer steps at test time and training in fewer iterations. Sample results can be found at youtu.be/0TtWJ_0mPfI …

Definition Extraction Tool (DefExt) google
We present DefExt, an easy to use semi supervised Definition Extraction Tool. DefExt is designed to extract from a target corpus those textual fragments where a term is explicitly mentioned together with its core features, i.e. its definition. It works on the back of a Conditional Random Fields based sequential labeling algorithm and a bootstrapping approach. Bootstrapping enables the model to gradually become more aware of the idiosyncrasies of the target corpus. In this paper we describe the main components of the toolkit as well as experimental results stemming from both automatic and manual evaluation. We release DefExt as open source along with the necessary files to run it in any Unix machine. We also provide access to training and test data for immediate use. …

Acumos google
Applying Machine Learning (ML) to business applications for automation usually faces difficulties when integrating diverse ML dependencies and services, mainly because of the lack of a common ML framework. In most cases, the ML models are developed for applications which are targeted for specific business domain use cases, leading to duplicated effort, and making reuse impossible. This paper presents Acumos, an open platform capable of packaging ML models into portable containerized microservices which can be easily shared via the platform’s catalog, and can be integrated into various business applications. We present a case study of packaging sentiment analysis and classification ML models via the Acumos platform, permitting easy sharing with others. We demonstrate that the Acumos platform reduces the technical burden on application developers when applying machine learning models to their business applications. Furthermore, the platform allows the reuse of readily available ML microservices in various business domains. …

DeceptionNet google
We present a novel approach to tackle domain adaptation between synthetic and real data. Instead of employing ‘blind’ domain randomization, i.e. augmenting synthetic renderings with random backgrounds or changing illumination and colorization, we leverage the task network as its own adversarial guide towards useful augmentations that maximize the uncertainty of the output. To this end, we design a min-max optimization scheme where a given task competes against a special deception network, with the goal of minimizing the task error subject to specific constraints enforced by the deceiver. The deception network samples from a family of differentiable pixel-level perturbations and exploits the task architecture to find the most destructive augmentations. Unlike GAN-based approaches that require unlabeled data from the target domain, our method achieves robust mappings that scale well to multiple target distributions from source data alone. We apply our framework to the tasks of digit recognition on enhanced MNIST variants as well as classification and object pose estimation on the Cropped LineMOD dataset and compare to a number of domain adaptation approaches, demonstrating similar results with superior generalization capabilities. …