**Binary Stochastic Filtering (BSF)**

Binary Stochastic Filtering (BSF), the algorithm for feature selection and neuron pruning is proposed in this work. Filtering layer stochastically passes or filters out features based on individual weights, which are tuned during neural network training process. By placing BSF after the neural network input, the filtering of input features is performed, i.e. feature selection. More then 5-fold dimensionality decrease was achieved in the experiments. Placing BSF layer in between hidden layers allows filtering of neuron outputs and could be used for neuron pruning. Up to 34-fold decrease in the number of weights in the network was reached, which corresponds to the significant increase of performance, that is especially important for mobile and embedded applications. … **k-PDTM**

Analyzing the sub-level sets of the distance to a compact sub-manifold of R d is a common method in TDA to understand its topology. The distance to measure (DTM) was introduced by Chazal, Cohen-Steiner and M{\’e}rigot in [7] to face the non-robustness of the distance to a compact set to noise and outliers. This function makes possible the inference of the topology of a compact subset of R d from a noisy cloud of n points lying nearby in the Wasserstein sense. In practice, these sub-level sets may be computed using approximations of the DTM such as the q-witnessed distance [10] or other power distance [6]. These approaches lead eventually to compute the homology of unions of n growing balls, that might become intractable whenever n is large. To simultaneously face the two problems of large number of points and noise, we introduce the k-power distance to measure (k-PDTM). This new approximation of the distance to measure may be thought of as a k-coreset based approximation of the DTM. Its sublevel sets consist in union of k-balls, k << n, and this distance is also proved robust to noise. We assess the quality of this approximation for k possibly dramatically smaller than n, for instance k = n 1 3 is proved to be optimal for 2-dimensional shapes. We also provide an algorithm to compute this k-PDTM. … **Iris**

Today’s conversational agents are restricted to simple standalone commands. In this paper, we present Iris, an agent that draws on human conversational strategies to combine commands, allowing it to perform more complex tasks that it has not been explicitly designed to support: for example, composing one command to ‘plot a histogram’ with another to first ‘log-transform the data’. To enable this complexity, we introduce a domain specific language that transforms commands into automata that Iris can compose, sequence, and execute dynamically by interacting with a user through natural language, as well as a conversational type system that manages what kinds of commands can be combined. We have designed Iris to help users with data science tasks, a domain that requires support for command combination. In evaluation, we find that data scientists complete a predictive modeling task significantly faster (2.6 times speedup) with Iris than a modern non-conversational programming environment. Iris supports the same kinds of commands as today’s agents, but empowers users to weave together these commands to accomplish complex goals. … **Evolving Graph Convolutional Network (EvolveGCN)**

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. For this case, combining the GNN with a recurrent neural network (RNN, broadly speaking) is a natural idea. Existing approaches typically learn one single graph model for all the graphs, by using the RNN to capture the dynamism of the output node embeddings and to implicitly regulate the graph model. In this work, we propose a different approach, coined EvolveGCN, that uses the RNN to evolve the graph model itself over time. This model adaptation approach is model oriented rather than node oriented, and hence is advantageous in the flexibility on the input. For example, in the extreme case, the model can handle at a new time step, a completely new set of nodes whose historical information is unknown, because the dynamism has been carried over to the GNN parameters. We evaluate the proposed approach on tasks including node classification, edge classification, and link prediction. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. …

# If you did not already know

**27**
*Sunday*
Nov 2022

Posted What is ...

in